-
Since the discovery of Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) in 1981 (50), this disease has become one of the most significant public health challenges globally. HIV/AIDS have claimed the lives of more than 25 million people worldwide. The year 2006 marks the 10th anniversity of the introduction of highly active antiretroviral therapy (HAART), a combination of three antiretrovirals (ARVs) from at least two drug classes (27, 28), that has led to significant reductions in HIV-related morbility and mortality (6, 52, 56). However, HIV virus is capable of mutating rapidly to develop drug resistance, so it is imperative to develop more effective and safe drugs to overcome the growing resistance of the virus. New molecules may block the known viral targets or other new ones. Currently there are 23 FDA-approved individual antiretroviral drugs that are classified into four categories based on their mechanism of action. There are 7 combinations of drugs currently approved by FDA. Additional agents are in various stages of clinical and preclinical development.
HTML
-
HIV entry is a critical event of HIV-1 life cycle. It is triggered by gp120 attachment to CD4, followed by gp120 engagement with a co-receptor (either CCR5 or CXCR4). Binding of HIV to co-receptors causes conformational changes in the envelope proteins, ultimately resulting in the fusion of the viral envelope and the host cytoplasmic membrane (5). As the earliest event, HIV entry represents an attractive target. In the past, this entry process between virus and host cell or transmission between cell and cell have been reestablished in vitro through using virus with reporter acceptor cell, reporter virus with reporter cells, in-fected cell and reporter cell or two reporter cell (74). But in recently years, more methods targeting one step of entry have been developed. Now, there are three types of inhibitors including: attachment inhibitors, co-receptor binding inhibitors and fusion inhibitors. Using soluble recombinant gp120 and recombinant CD4 can mock the attachment of virus to CD4+ cells in vitro, and an ELISA was developed (72). When synthetic mimetic peptides of the CD4-binding site of HIV-1 gp120 or the gp120-binding site of CD4 were used, this method was improved and new methods (such as fluorescence polarization as shown in Fig. 1) were developed with more convenience (18, 67). As one of hottest targets for entry, the binding of gp120-gp41 to co-receptor can be blocked by che-mokine antagonists. In early days, a cell-based ELISA assay using radio-labeled chemokine was widely used to measure the inhibitory activity of compounds (2). But now more other convenient methods are also used, such as baculovirus based assay and flowcytometry based assay or ELISA-based assay (33, 79). As a hottest target for entry, the process of rearrangement of gp41 to form the six-helix bundle has been investigated more intensively. Liu et al reestablished the six-helix bundles using C34 and N36 peptides in vitro (43). Based on that, many methods such as Sandwich ELISA, FLISA and FRET were developed to target this process and used in entry inhibitor screening with more convenience (76, 40).
Figure 1. Fluorescence polarization in screening inhibitors of gp120-CD4 binding and protease (18, 67, 62). In screening inhibitors of binding, A and B represent fluorescein-labelled CD4 peptide and mocked CD4 binding site of HIV-1 glycoproteins respectively. In screening inhibitors of protease, A and B represent fluorescein and antigen labelled peptide substrate and antidody respectively.
-
Reverse transcription is an important event of HIV life cycle. It was catalyzed by reverse transcriptase, which was encoded by HIV pol gene and consists of a 66 kDa polypeptide and a 51 kDa polypeptide with separate DNA polymerase and ribonuclease H (RNase H) domains in the 66 kDa polypeptide. Both the DNA polymerase and RNase H activities of RT are required for viral replication. In the infected cell, HIV-1 RT ultimately transcribes a single-stranded viral RNA template into double-stranded DNA (dsDNA) through a multi-step process: (ⅰ) RNA-dependent DNA polymerization to produce a (−) DNA copy, with (ⅱ) concomitant cleavage of the RNA strand of the heteroduplex by RNase H, and (ⅲ) DNA-dependent DNA polymerization to yield the dsDNA product. During this process, template switching by the newly synthesized (−) DNA takes place at least twice (21). RT inhibitors are the first HIV-1 drugs marketed and currently serve as the backbone of most frontline HIV combination therapy. Now there are three kinds of assays available for HIV inhibitor screening. First, assays for measuring DNA polymerase activity, such as Scintillation Proximity Assay(SPA)(Fig. 2), Microarray Compound Screening technology (µARCS) and enzyme immunoassays (EIAs) (38, 77, 78). In µARCS, the nucleic acid substrate was biotinylated on one end and was bound to the SAM membrane. A low melting-point agarose gel containing the rest of the reaction components was first placed on a polystyrene sheet spotted with compounds to allow passive diffusion of the compounds into the gel. The gel was removed from the compound sheet and applied to the SAM membrane with the immobilized nucleic acid template to initiate the polymerization. After the incubation, the membrane was washed with a high-salt buffer and exposed for imaging (77). Second, assays for measuring RNase H activity. In 1996, Rychetsky first development an EIA using a duplex substrate labeled with biotin and digoxigenin to high throughput screen inhibitor of RNase H (61). Recently, this method was development as a FRET assay that labels the duplex with fluorescein and Dabcyl H (Fig. 3) (57). Third, assays for measuring polymerase activity and RNase activity simultaneously. In this kind of assay, SPA assay was also used widely (20).
Figure 2. Scintillation Proximity Assay (SPA) in screening inhibitors of polymerase, RNase and integrase (5, 20, 38). When certain radioactive atoms decay, they release β-particles. The distance these particles travel through an aqueous solution is dependent on the energy of the particle. If a radioactive molecule is held in close enough proximity to a SPA Scintillation Bead or a SPA Imaging Bead, the decay particles stimulate the scintillant within the bead to emit light, which is then detected in a PMT-based scintillation counter or on a CCD-based imager respectively. However, if a radioactive molecule is free in a solution containing SPA beads, the decay particles will not have sufficient energy to reach the bead and no light will be emitted. This discrimination of binding by proximity means that no separation of bound and free ligand is required.
-
HIV protease is a 22 kDa homodimer aspartyl protease, which can cleave HIV Gag and Pol polypeptide precursors to form mature structural and enzymatic gene products. HIV-1 PR activity is critical for viral replication, and so it is also an ideal target for HIV therapy. In the past years, HPLC analysis of production of cut synthetic peptide substrate was used widely in protease inhibitor identification (31). But this method is too time and laborious-consuming to screen large number of samples. Subsequently, a colorimetric assay using unlabeled peptide substrate was also used with less time-cost but lower sensitivity (65). Nowadays, one synthetic peptide substrates typically consisting of a cleavage sequence flanked with fluorescent donor and acceptor labels was universally used, and the method was developed as FRET (Fig. 3). Although EDANSC/DABCYL pair is most commonly donor/acceptor labeling the peptide substrate in FRET assay, there are also other pairs with more advantage than them, such as Hilyte fluor 488/QXL 520, Hilyte Fluor TR/Qxl 620 and Cy3/ Cy5Q (22). There are also other fluorescence and label technology, such as homogeneous time-resolved fluorescence (HTRF) assays (Fig. 3), alphascreen (Fig. 4) (Perkin Elmer, Alphascreen Technical Manual) and fluorescence polarization (Fig. 1) (35, 62). In addition to enzyme assays in vitro, a number of cell-based assays have been reported for HIV-1 protease. In these assays, HIV PR expression plasmid is transfected into the reporter cell or cotransfected with plasmid in-cluding reporter gene, and then repoter gene is induced to express. Ultimately, through measuring cell viability and expression level of reporter gene, the activity of the compound is evaluated (10, 39).
Figure 4. Alphascreen assay in Screening inhibitors of protease (35).
-
HIV IN is a 32kDa dimmer protein encoded by 3'-end of pol gene. It comprises three structural domains: the aminal terminal domain (NTD) with HHCC motif, catalyze core domain (CCD) and carboxy terminal domain (CTD) with overall SH3 fold and nonspecifical binding activity to DNA required for process of integration. Through two consecutive steps: 3'-processing and strand transferring, it can insert the viral cDNA ends into host chromosomes. Integrase is essential for retroviral replication, and the absence of a host-cell quivalent of integrase means that the integrase inhibitors do not interfere with normal cellular processes, and therefore have a high therapeutic index (60). The screening and discovery of integrase inhibitors generally relies primarily on simple assays that use recombinant integrase and short oligonucleotide substrates that mimic the viral DNA ends. At the beginning of the screen, EIA is used commonly. It immobilized the donor dsDNA onto microplate, and then enzyme and target dsDNA being labeled were added, followed by ligated production quantified with the method compared to label (13, 32). With the same protocol, a more high throughput method was developed with donor dsDNA immobi-lized on membranes and targets DNA labeled with flurescein (15). Using this method, a library of 250, 000 compounds was screened for IN activity. In 2004 a method more compatible with HTS using robotics was established. Different from EIA, in SPA assay (Fig. 2) the median immobilized donor DNA was replaced by SPA beads, and the label was changed to isotope compared with the measurement method of scintillation counting (5). Besides recombinant enzyme based assays, there is a more authentic assay mimicing the reaction in vivo. The double-strand DNA targets are immobilized on 96-well plate, and preintegration complex (PIC) containing host and virus protein is added. After reaction is completed, the products are quantified by PCR (29, 49).
-
It has been proved that the formation of homodimer, pseudohomodimers or multimers play a central role in function of HIV RT, PR and IN and disruption of protein-protein interactions in enzymes may constitute an alternative way to achieve HIV-1 inhibition (8). Now a hybrid assay and an affinity assay were used in identifying inhibitors of HIV RT dimerization and many inhibitors have been found (23, 64). For in-tegrase and protease, only a few compounds were found with activity against formation of dimmer or multimer, but there aren't valuable assays targeting these two proteins.
-
In addition to the viral structural proteins (Gag and Env), and the pol-encoded enzymes (PR, RT, and IN), the HIV genome encodes several additional structural proteins (NC, MA), regulatory proteins (Rev and Tat) and accessory proteins, such as Vif, Vpu, Vpr, Vpx, and Nef. More recent tissue culture and in vivo experiments have revealed a strong requirement for these gene products for efficient virus replication and disease induction (17). And many assays have been developed targeting these proteins (Table 1). Using such assays more drugs with mechanisms different from recent approved drugs may be found in future.
Table 1. Other targets used for anti-HIV/AIDS drug screening