Citation: Jara J. Joedicke, Kirsten K. Dietze, Gennadiy Zelinskyy, Ulf Dittmer. The phenotype and activation status of regulatory T cells during Friend retrovirus infection .VIROLOGICA SINICA, 2014, 29(1) : 48-60.  http://dx.doi.org/10.1007/s12250-014-3396-z

The phenotype and activation status of regulatory T cells during Friend retrovirus infection

  • Corresponding author: Ulf Dittmer, ulf.dittmer@uni-due.de
  • Received Date: 18 October 2013
    Accepted Date: 03 January 2014
    Published Date: 20 January 2014
    Available online: 01 February 2014
  • The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.

  • 加载中
    1. Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T, Dittmer U. 2013. Tumor-specific cd4+ t cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory t cells. Cancer Immunol Immun: CII, 62: 257-271.
        doi: 10.1007/s00262-012-1329-y

    2. Akimova T, Beier U H, Wang L, Levine M H, Hancock W W. 2011. Helios expression is a marker of t cell activation and proliferation. PloS One, 6: e24226.

    3. Alatrakchi N, Koziel M. 2009. Regulatory t cells and viral liver disease. J Viral Hepatitis, 16: 223-229.
        doi: 10.1111/j.1365-2893.2009.01081.x

    4. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, Malissen B, Hasenkrug K, Kassiotis G. 2008. Retrovirus-specificity of regulatory t cells is neither present nor required in preventing retrovirus-induced bone marrow immune pathology. Immunity, 29: 782-794.
        doi: 10.1016/j.immuni.2008.09.016

    5. Barber D L, Wherry E J, Masopust D, Zhu B, Allison J P, Sharpe A H, Freeman G J, Ahmed R. 2006. Restoring function in exhausted cd8 t cells during chronic viral infection. Nature, 439: 682-687.
        doi: 10.1038/nature04444

    6. Barron L, Dooms H, Hoyer K K, Kuswanto W, Hofmann J, O'Gorman W E, Abbas A K. 2010. Cutting edgeh: Mechanisms of il-2-dependent maintenance of functional regulatory t cells. J Immunol, 185: 6426-6430.
        doi: 10.4049/jimmunol.0903940

    7. Bedoya F, Cheng G S, Leibow A, Zakhary N, Weissler K, Garcia V, Aitken M, Kropf E, Garlick D S, Wherry E J, Erikson J, Caton A J. 2013. Viral antigen induces differentiation of foxp3+ natural regulatory t cells in influenza virus-infected mice. J Immunol, 190: 6115-6125.
        doi: 10.4049/jimmunol.1203302

    8. Blackburn S D, Shin H, Haining W N, Zou T, Workman C J, Polley A, Betts M R, Freeman G J, Vignali D A, Wherry E J. 2009. Coregulation of cd8+ t cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol, 10: 29-37.
        doi: 10.1038/ni.1679

    9. Cabarrocas J, Cassan C, Magnusson F, Piaggio E, Mars L, Derbinski J, Kyewski B, Gross D A, Salomon B L, Khazaie K, Saoudi A, Liblau R S. 2006. Foxp3+ cd25+ regulatory t cells specific for a neo-self-antigen develop at the double-positive thymic stage. P Nat Acad Sci USA, 103: 8453-8458.
        doi: 10.1073/pnas.0603086103

    10. Chevalier M F, Weiss L. 2013. The split personality of regulatory t cells in hiv infection. Blood, 121: 29-37.
        doi: 10.1182/blood-2012-07-409755

    11. Choi Y, Kappler J W, Marrack P. 1991. A superantigen encoded in the open reading frame of the 3' long terminal repeat of mouse mammary tumour virus. Nature, 350: 203-207.
        doi: 10.1038/350203a0

    12. Coquet J M, Ribot J C, Babala N, Middendorp S, van der Horst G, Xiao Y, Neves J F, Fonseca-Pereira D, Jacobs H, Pennington D J, Silva-Santos B, Borst J. 2013. Epithelial and dendritic cells in the thymic medulla promote cd4+foxp3+ regulatory t cell development via the cd27-cd70 pathway. J Exp Med, 210: 715-728.
        doi: 10.1084/jem.20112061

    13. Coutinho A, Caramalho I, Seixas E, Demengeot J. 2005. Thymic commitment of regulatory t cells is a pathway of tcr-dependent selection that isolates repertoires undergoing positive or negative selection. Curr Top Microbiol, 293: 43-71.

    14. Dietze K K, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. 2013. Combining regulatory t cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific cd8(+) t cells and efficiently reduces chronic retroviral loads. PLoS Pathog, 9: e1003798.

    15. Dittmer U, He H, Messer R J, Schimmer S, Olbrich A R, Ohlen C, Greenberg P D, Stromnes I M, Iwashiro M, Sakaguchi S, Evans L H, Peterson K E, Yang G, Hasenkrug K J. 2004. Functional impairment of cd8(+) t cells by regulatory t cells during persistent retroviral infection. Immunity, 20: 293-303.
        doi: 10.1016/S1074-7613(04)00054-8

    16. Ebinuma H, Nakamoto N, Li Y, Price D A, Gostick E, Levine B L, Tobias J, Kwok W W, Chang K M. 2008. Identification and in vitro expansion of functional antigen-specific cd25+ foxp3+ regulatory t cells in hepatitis c virus infection. J Virol, 82: 5043-5053.
        doi: 10.1128/JVI.01548-07

    17. Fontenot J D, Rasmussen J P, Williams L M, Dooley J L, Farr A G, Rudensky A Y. 2005. Regulatory t cell lineage specification by the forkhead transcription factor foxp3. Immunity, 22: 329-341.
        doi: 10.1016/j.immuni.2005.01.016

    18. Francisco L M, Salinas V H, Brown K E, Vanguri V K, Freeman G J, Kuchroo V K, Sharpe A H. 2009. Pd-l1 regulates the development, maintenance, and function of induced regulatory t cells. J Exp Med, 206: 3015-3029.
        doi: 10.1084/jem.20090847

    19. Furuichi Y, Tokuyama H, Ueha S, Kurachi M, Moriyasu F, Kakimi K. 2005. Depletion of cd25+cd4+t cells (tregs) enhances the hbv-specific cd8+ t cell response primed by DNA immunization. World J Gastroentero, 11: 3772-3777.
        doi: 10.3748/wjg.v11.i24.3772

    20. Gottschalk R A, Corse E, Allison J P. 2012. Expression of helios in peripherally induced foxp3+ regulatory t cells. J Immunol, 188: 976-980.
        doi: 10.4049/jimmunol.1102964

    21. Iwashiro M, Messer R J, Peterson K E, Stromnes I M, Sugie T, Hasenkrug K J. 2001. Immunosuppression by cd4+ regulatory t cells induced by chronic retroviral infection. P Nat Acad Sci USA, 98: 9226-9230.
        doi: 10.1073/pnas.151174198

    22. Jones R B, Ndhlovu L C, Barbour J D, Sheth P M, Jha A R, Long B R, Wong J C, Satkunarajah M, Schweneker M, Chapman J M, Gyenes G, Vali B, Hyrcza M D, Yue F Y, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht F M, Chun T W, McCune J M, Kaul R, Rini J M, Nixon D F, Ostrowski M A. 2008. Tim-3 expression defines a novel population of dysfunctional t cells with highly elevated frequencies in progressive hiv-1 infection. J Exp Med, 205: 2763-2779.
        doi: 10.1084/jem.20081398

    23. Killebrew J R, Perdue N, Kwan A, Thornton A M, Shevach E M, Campbell D J. 2011. A self-reactive tcr drives the development of foxp3+ regulatory t cells that prevent autoimmune disease. J Immunol, 187: 861-869.
        doi: 10.4049/jimmunol.1004009

    24. Kohm A P, Carpentier P A, Anger H A, Miller S D. 2002. Cutting edge: Cd4+cd25+ regulatory t cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol, 169: 4712-4716.
        doi: 10.4049/jimmunol.169.9.4712

    25. Kryworuchko M, Theze J. 2006. Interleukin-2: From t cell growth and homeostasis to immune reconstitution of hiv patients. Vitam Horm, 74: 531-547.
        doi: 10.1016/S0083-6729(06)74021-3

    26. Leavy O. 2013. Regulatory t cells: The thymic medulla -a cradle for treg cell development. Nat Rev Immunol. 13: 304.

    27. Li W, Green W R. 2011. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by cd4 t regulatory cell depletion and pd-1 blockade. J Virol, 85: 13342-13353.
        doi: 10.1128/JVI.00120-11

    28. Lilly F, Steeves R A. 1973. B-tropic friend virus: A host-range pseudotype of spleen focus-forming virus (sffv). Virology, 55: 363-370.
        doi: 10.1016/0042-6822(73)90176-1

    29. Malek T R. 2003. The main function of il-2 is to promote the development of t regulatory cells. J Leukocyte Biol, 74: 961-965.
        doi: 10.1189/jlb.0603272

    30. Manigold T, Racanelli V. 2007. T-cell regulation by cd4 regulatory t cells during hepatitis b and c virus infections: Facts and controversies. Lancet Infect Dis, 7: 804-813.
        doi: 10.1016/S1473-3099(07)70289-X

    31. Mills K H. 2004. Regulatory t cells: Friend or foe in immunity to infection? Nat Rev Immunol. 4: 841-855.

    32. Myers L, Joedicke J J, Carmody A B, Messer R J, Kassiotis G, Dudley J P, Dittmer U, Hasenkrug K J. 2013. Il-2-independent and tnf-alpha-dependent expansion of vbeta5+ natural regulatory t cells during retrovirus infection. J Immunol, 190: 5485-5495.
        doi: 10.4049/jimmunol.1202951

    33. Nilsson J, Boasso A, Velilla P A, Zhang R, Vaccari M, Franchini G, Shearer G M, Andersson J, Chougnet C. 2006. Hiv-1-driven regulatory t-cell accumulation in lymphoid tissues is associated with disease progression in hiv/aids. Blood, 108: 3808-3817.
        doi: 10.1182/blood-2006-05-021576

    34. Palmer B E, Neff C P, Lecureux J, Ehler A, Dsouza M, Remling-Mulder L, Korman A J, Fontenot A P, Akkina R. 2013. In vivo blockade of the pd-1 receptor suppresses hiv-1 viral loads and improves cd4+ t cell levels in humanized mice. J Immunol, 190: 211-219.
        doi: 10.4049/jimmunol.1201108

    35. Piersma S J, van der Hulst J M, Kwappenberg K M, Goedemans R, van der Minne C E, van der Burg S H. 2010. Influenza matrix 1-specific human cd4+ foxp3+ and foxp3(-) regulatory t cells can be detected long after viral clearance. Eur J Immunol, 40: 3064-3074.
        doi: 10.1002/eji.200940177

    36. Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum C J, Chougnet C A. 2011. Frequency of circulating regulatory t cells increases during chronic hiv infection and is largely controlled by highly active antiretroviral therapy. PloS One, 6: e28118.

    37. Punkosdy G A, Blain M, Glass D D, Lozano M M, O'Mara L, Dudley J P, Ahmed R, Shevach E M. 2011. Regulatory t-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. P Nat Acad Sci USA, 108: 3677-3682.
        doi: 10.1073/pnas.1100213108

    38. Robertson S J, Messer R J, Carmody A B, Hasenkrug K J. 2006. In vitro suppression of cd8+ t cell function by friend virus-induced regulatory t cells. J Immunol, 176: 3342-3349.
        doi: 10.4049/jimmunol.176.6.3342

    39. Sadlack B, Merz H, Schorle H, Schimpl A, Feller A C, Horak I. 1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 75: 253-261.
        doi: 10.1016/0092-8674(93)80067-O

    40. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 155: 1151-1164.

    41. Sakuishi K, Ngiow S F, Sullivan J M, Teng M W, Kuchroo V K, Smyth M J, Anderson A C. 2013. Tim3foxp3 regulatory t cells are tissue-specific promoters of t-cell dysfunction in cancer. Oncoimmunology, 2: e23849.

    42. Sanchez A M, Zhu J, Huang X, Yang Y. 2012. The development and function of memory regulatory t cells after acute viral infections. J Immunol, 189: 2805-2814.
        doi: 10.4049/jimmunol.1200645

    43. Scheffold A, Huhn J, Hofer T. 2005. Regulation of cd4+cd25+ regulatory t cell activity: It takes (il-)two to tango. Eur J Immunol, 35: 1336-1341.
        doi: 10.1002/eji.200425887

    44. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S. 2006. Foxp3-dependent and -independent molecules specific for cd25+cd4+ natural regulatory t cells revealed by DNA microarray analysis. Int Immunol, 18: 1197-1209.
        doi: 10.1093/intimm/dxl060

    45. Suzuki H, Duncan G S, Takimoto H, Mak T W. 1997. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the il-2 receptor beta chain. J Exp Med, 185: 499-505.
        doi: 10.1084/jem.185.3.499

    46. Taylor A L, Llewelyn M J. 2010. Superantigen-induced proliferation of human cd4+cd25-t cells is followed by a switch to a functional regulatory phenotype. J Immunol, 185: 6591-6598.
        doi: 10.4049/jimmunol.1002416

    47. Thornton A M, Korty P E, Tran D Q, Wohlfert E A, Murray P E, Belkaid Y, Shevach E M. 2010. Expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells. J Immunol, 184: 3433-3441.
        doi: 10.4049/jimmunol.0904028

    48. Verhagen J, Wraith D C. 2010. Comment on "expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells". J Immunol, 185: 7129; author reply 7130.

    49. Wang H Y, Lee D A, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach E M, Wang R F. 2004. Tumor-specific human cd4+ regulatory t cells and their ligands: Implications for immunotherapy. Immunity, 20: 107-118.
        doi: 10.1016/S1074-7613(03)00359-5

    50. Wei W Z, Morris G P, Kong Y C. 2004. Anti-tumor immunity and autoimmunity: A balancing act of regulatory t cells. Cancer Immunol Immun, 53: 73-78.
        doi: 10.1007/s00262-003-0444-1

    51. Willerford D M, Chen J, Ferry J A, Davidson L, Ma A, Alt F W. 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity, 3: 521-530.
        doi: 10.1016/1074-7613(95)90180-9

    52. Woodland D, Happ M P, Bill J, Palmer E. 1990. Requirement for cotolerogenic gene products in the clonal deletion of i-e reactive t cells. Science, 247: 964-967.
        doi: 10.1126/science.1968289

    53. Woodland D L, Blackman M A. 1993. How do t-cell receptors, mhc molecules and superantigens get together? Immunology Today. 14: 208-212.

    54. Yang J H, Zhang Y X, Yu R B, Su C, Sun N X. 2006. cd4+ cd25+ regulatory t cells suppress cd4+ t cell responses in patients with persistent hepatitis c virus infection. Chinese Journal of Internal Medicine, 45: 29-33.
        doi: 10.2169/internalmedicine.45.1467

    55. Young G R, Ploquin M J, Eksmond U, Wadwa M, Stoye J P, Kassiotis G. 2012. Negative selection by an endogenous retrovirus promotes a higher-avidity cd4+ t cell response to retroviral infection. PLoS Pathog, 8: e1002709.

    56. Zelinskyy G, Kraft A R, Schimmer S, Arndt T, Dittmer U. 2006. Kinetics of cd8+ effector t cell responses and induced cd4+ regulatory t cell responses during friend retrovirus infection. Eur J Immunol, 36: 2658-2670.
        doi: 10.1002/eji.200636059

    57. Zelinskyy G, Dietze K K, Husecken Y P, Schimmer S, Nair S, Werner T, Gibbert K, Kershaw O, Gruber A D, Sparwasser T, Dittmer U. 2009. The regulatory t-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic t-cell response. Blood, 114: 3199-3207.
        doi: 10.1182/blood-2009-03-208736

    58. Zhou Q, Munger M E, Highfill S L, Tolar J, Weigel B J, Riddle M, Sharpe A H, Vallera D A, Azuma M, Levine B L, June C H, Murphy W J, Munn D H, Blazar B R. 2010. Program death-1 signaling and regulatory t cells collaborate to resist the function of adoptively transferred cytotoxic t lymphocytes in advanced acute myeloid leukemia. Blood, 116: 2484-2493.
        doi: 10.1182/blood-2010-03-275446

  • 加载中

Figures(8)

Article Metrics

Article views(7806) PDF downloads(12) Cited by()

Related
Proportional views

    The phenotype and activation status of regulatory T cells during Friend retrovirus infection

      Corresponding author: Ulf Dittmer, ulf.dittmer@uni-due.de
    • Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany

    Abstract: The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.