Citation: Rui Wang, Haiwei Zhang, Cheng Peng, Jian Shi, Huajun Zhang, Rui Gong. Identification and Characterization of a Novel Single Domain Antibody Against Ebola Virus .VIROLOGICA SINICA, 2021, 36(6) : 1600-1610.  http://dx.doi.org/10.1007/s12250-021-00454-z

Identification and Characterization of a Novel Single Domain Antibody Against Ebola Virus

  • Corresponding author: Huajun Zhang, hjzhang@wh.iov.cn, ORCID: http://orcid.org/0000-0001-8161-3949
    Rui Gong, gongr@wh.iov.cn, ORCID: http://orcid.org/0000-0001-9222-5642
  • Received Date: 05 June 2021
    Accepted Date: 09 August 2021
    Published Date: 11 October 2021
    Available online: 01 December 2021
  • Ebola virus (EBOV) belongs to the Filoviridae family and causes severe illnesses such as hemorrhagic fever with a high mortality rate up to 90%. Now two antibody drugs termed Inmazeb and Ebanga have been approved for treating EBOV infection. However, clinical studies have demonstrated that the mortality rate of the patients who received these two antibody drugs remains above 30%. Therefore, novel therapeutics with better efficacy is still desired. The isolated human IgG1 constant domain 2 (CH2 domain) has been proposed as a scaffold for the development of C-based single domain antibodies (C-sdAbs) as therapeutic candidates against viral infections and other diseases. Here, we screened and identified a novel C-sdAb termed M24 that targets EBOV glycoprotein (GP) from a C-sdAb phage display library. M24 neutralizes the pseudotype EBOV with IC50 of 0.8 nmol/L (12 ng/mL) and has modest neutralizing activity against authentic EBOV. Epitope determination, including molecular docking and site mutation analysis, discloses that M24 binds to the internal fusion loop (IFL) within GP2, a transmembrane subunit of GP. Interestingly, we found that the binding of M24 to GP at pH 5.5 has dramatically decreased compared to the binding at pH 7.5, which may lead to weak efficacy in the neutralization of authentic EBOV. Since no sdAb against EBOV infection has been reported to date, our results not only give a proof of concept that sdAbs could be utilized for the development of potential therapeutic candidates against EBOV infection, but also provide useful information for the discovery and improvement of anti-EBOV agents.


  • 加载中
    1. Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F (2020) Designs and characterization of subunit Ebola GP vaccine candidates: implications for immunogenicity. Front Immunol 11: 586595
        doi: 10.3389/fimmu.2020.586595

    2. Cao G, Gao X, Zhan Y, Wang Q, Zhang Z, Dimitrov DS, Gong R (2020) An engineered human IgG1 CH2 domain with decreased aggregation and nonspecific binding. Mabs 12: 1689027
        doi: 10.1080/19420862.2019.1689027

    3. Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M, Shi W, Choe M, Marcus H, Thompson EA, Cagigi A, Silacci C, Fernandez-Rodriguez B, Perez L, Sallusto F, Vanzetta F, Agatic G, Cameroni E, Kisalu N, Gordon I, Ledgerwood JE, Mascola JR, Graham BS, Muyembe-Tamfun JJ, Trefry JC, Lanzavecchia A, Sullivan NJ (2016) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351: 1339–1342
        doi: 10.1126/science.aad5224

    4. Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F, Chandran K, Luban J, Munro JB (2020) Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biol 18: e3000626
        doi: 10.1371/journal.pbio.3000626

    5. Davey RT, Dodd L, Proschan MA, Neaton J, Neuhaus Nordwall J, Koopmeiners JS, Beigel J, Tierney J, Lane HC, Fauci AS, Massaquoi MBF, Sahr F, Malvy D (2016) A randomized, controlled trial of ZMapp for Ebola virus infection. N Engl J Med 375: 1448–1456
        doi: 10.1056/NEJMoa1604330

    6. Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE, Mas V, Millar A, Power UF, Stortelers C, Allosery K, Melero JA, Depla E (2016) Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob Agents Chemother 60: 6–13
        doi: 10.1128/AAC.01802-15

    7. Dimitrov DS (2009) Engineered CH2 domains (nanoantibodies). Mabs 1: 26–28
        doi: 10.4161/mabs.1.1.7480

    8. Duggan S (2018) Caplacizumab: First Global Approval. Drugs 78: 1639–1642
        doi: 10.1007/s40265-018-0989-0

    9. Emanuel J, Marzi A, Feldmann H (2018) Filoviruses: ecology, molecular biology, and evolution. Adv Virus Res 100: 189–221

    10. Gao X, Conard A, Yang C, Zhan Y, Zeng F, Shi J, Li W, Dimitrov DS, Gong R (2019) Optimization of the C-terminus of an autonomous human IgG1 CH2 domain for stability and aggregation resistance. Mol Pharm 16: 3647–3656
        doi: 10.1021/acs.molpharmaceut.9b00544

    11. Gong R, Xiao G (2013) Engineered antibody variable and constant domains as therapeutic candidates. Pharm Pat Anal 2: 637–646
        doi: 10.4155/ppa.13.44

    12. Gong R, Vu BK, Feng Y, Prieto DA, Dyba MA, Walsh JD, Prabakaran P, Veenstra TD, Tarasov SG, Ishima R, Dimitrov DS (2009) Engineered human antibody constant domains with increased stability. J Biol Chem 284: 14203–14210
        doi: 10.1074/jbc.M900769200

    13. Gong R, Wang Y, Feng Y, Zhao Q, Dimitrov DS (2011) Shortened engineered human antibody CH2 domains: increased stability and binding to the human neonatal Fc receptor. J Biol Chem 286: 27288–27293
        doi: 10.1074/jbc.M111.254219

    14. Gong R, Wang Y, Ying T, Dimitrov DS (2012) Bispecific engineered antibody domains (nanoantibodies) that interact noncompetitively with an HIV-1 neutralizing epitope and FcRn. PLoS ONE 7: e42288
        doi: 10.1371/journal.pone.0042288

    15. Gregory SM, Harada E, Liang B, Delos SE, White JM, Tamm LK (2011) Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. Proc Natl Acad Sci USA 108: 11211–11216
        doi: 10.1073/pnas.1104760108

    16. Karan LS, Makenov MT, Korneev MG, Sacko N, Boumbaly S, Yakovlev SA, Kourouma K, Bayandin RB, Gladysheva AV, Shipovalov AV, Yurganova IA, Grigorieva YE, Fedorova MV, Scherbakova SA, Kutyrev VV, Agafonov AP, Maksyutov RA, Shipulin GA, Maleev VV, Boiro M, Akimkin VG, Popova AY (2019) Bombali virus in mops condylurus bats, Guinea. Emerg Infect Dis 25: 1774–1775

    17. Kazemi-Lomedasht F, Behdani M, Bagheri KP, Habibi-Anbouhi M, Abolhassani M, Arezumand R, Shahbazzadeh D, Mirzahoseini H (2015) Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 65: 58–67
        doi: 10.1016/j.molimm.2015.01.010

    18. Keck Z-Y, Enterlein SG, Howell KA, Vu H, Shulenin S, Warfield KL, Froude JW, Araghi N, Douglas R, Biggins J, Lear-Rooney CM, Wirchnianski AS, Lau P, Wang Y, Herbert AS, Dye JM, Glass PJ, Holtsberg FW, Foung SKH, Aman MJ (2016) Macaque monoclonal antibodies targeting novel conserved epitopes within filovirus glycoprotein. J Virol 90: 279–291
        doi: 10.1128/JVI.02172-15

    19. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177–182
        doi: 10.1038/nature07082

    20. Markham A (2021) REGN-EB3: first approval. Drugs 81: 175–178
        doi: 10.1007/s40265-020-01452-3

    21. Milligan JC, Parekh DV, Fuller KM, Igarashi M, Takada A, Saphire EO (2019) Structural characterization of pan-Ebolavirus antibody 6D6 targeting the fusion peptide of the surface glycoprotein. J Infect Dis 219: 415–419
        doi: 10.1093/infdis/jiy532

    22. Misasi J, Gilman MS, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS (2016) Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351: 1343–1346
        doi: 10.1126/science.aad6117

    23. Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, Ali R, Coulibaly S, Levine AC, Grais R, Diaz J, Lane HC, Muyembe-Tamfum JJ, Group PW, Sivahera B, Camara M, Kojan R, Walker R, Dighero-Kemp B, Cao H, Mukumbayi P, Mbala-Kingebeni P, Ahuka S, Albert S, Bonnett T, Crozier I, Duvenhage M, Proffitt C, Teitelbaum M, Moench T, Aboulhab J, Barrett K, Cahill K, Cone K, Eckes R, Hensley L, Herpin B, Higgs E, Ledgerwood J, Pierson J, Smolskis M, Sow Y, Tierney J, Sivapalasingam S, Holman W, Gettinger N, Vallee D, Nordwall J, Team PCS (2019) A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med 381: 2293–2303
        doi: 10.1056/NEJMoa1910993

    24. Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H, Molero F, Juste J, Quetglas J, Savji N, de la Cruz Martínez M, Herrera JE, Pizarro M, Hutchison SK, Echevarría JE, Lipkin WI, Tenorio A (2011) Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog 7: e1002304
        doi: 10.1371/journal.ppat.1002304

    25. Pallesen J, Murin CD, de Val N, Cottrell CA, Hastie KM, Turner HL, Fusco ML, Flyak AI, Zeitlin L, Crowe JE Jr, Andersen KG, Saphire EO, Ward AB (2016) Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat Microbiol 1: 16128
        doi: 10.1038/nmicrobiol.2016.128

    26. Qiu X, Alimonti JB, Melito PL, Fernando L, Stroher U, Jones SM (2011) Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol 141: 218–227
        doi: 10.1016/j.clim.2011.08.008

    27. Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, Strong JE, Plummer F, Corbett CR, Alimonti JB, Kobinger GP (2012) Successful treatment of ebola virus-infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 4: 138ra181

    28. Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP (2014) Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514: 47–53
        doi: 10.1038/nature13777

    29. Schepens B, Ibanez LI, De Baets S, Hultberg A, Bogaert P, De Bleser P, Vervalle F, Verrips T, Melero J, Vandevelde W, Vanlandschoot P, Saelens X (2011) Nanobodies(R) specific for respiratory syncytial virus fusion protein protect against infection by inhibition of fusion. J Infect Dis 204: 1692–1701
        doi: 10.1093/infdis/jir622

    30. Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, Gao GF (2016) Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164: 258–268
        doi: 10.1016/j.cell.2015.12.044

    31. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46: W296–W303
        doi: 10.1093/nar/gky427

    32. Wec AZ, Herbert AS, Murin CD, Nyakatura EK, Abelson DM, Fels JM, He S, James RM, de La Vega M-A, Zhu W, Bakken RR, Goodwin E, Turner HL, Jangra RK, Zeitlin L, Qiu X, Lai JR, Walker LM, Ward AB, Dye JM, Chandran K, Bornholdt ZA (2017) Antibodies from a human survivor define sites of vulnerability for broad protection against ebolaviruses. Cell 169

    33. Wong G, Audet J, Fernando L, Fausther-Bovendo H, Alimonti JB, Kobinger GP, Qiu X (2014) Immunization with vesicular stomatitis virus vaccine expressing the Ebola glycoprotein provides sustained long-term protection in rodents. Vaccine 32: 5722–5729
        doi: 10.1016/j.vaccine.2014.08.028

    34. Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, Yang Z, Lu L, Jiang S, Ying T (2020) Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe 27: 891–898 e895
        doi: 10.1016/j.chom.2020.04.023

    35. Xiao X, Feng Y, Vu BK, Ishima R, Dimitrov DS (2009) A large library based on a novel (CH2) scaffold: identification of HIV-1 inhibitors. Biochem Biophys Res Commun 387: 387–392
        doi: 10.1016/j.bbrc.2009.07.044

    36. Zhang MY, Shu Y, Rudolph D, Prabakaran P, Labrijn AF, Zwick MB, Lal RB, Dimitrov DS (2004) Improved breadth and potency of an HIV-1-neutralizing human single-chain antibody by random mutagenesis and sequential antigen panning. J Mol Biol 335: 209–219
        doi: 10.1016/j.jmb.2003.09.055

    37. Zhao Y, Ren J, Harlos K, Jones DM, Zeltina A, Bowden TA, Padilla-Parra S, Fry EE, Stuart DI (2016) Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535: 169–172
        doi: 10.1038/nature18615

    38. Zhao X, Howell KA, He S, Brannan JM, Wec AZ, Davidson E, Turner HL, Chiang C-I, Lei L, Fels JM, Vu H, Shulenin S, Turonis AN, Kuehne AI, Liu G, Ta M, Wang Y, Sundling C, Xiao Y, Spence JS, Doranz BJ, Holtsberg FW, Ward AB, Chandran K, Dye JM, Qiu X, Li Y, Aman MJ (2017) Immunization-elicited broadly protective antibody reveals ebolavirus fusion loop as a site of vulnerability. Cell 169: 891–904. e15
        doi: 10.1016/j.cell.2017.04.038

  • 加载中

Figures(6) / Tables(1)

Article Metrics

Article views(3625) PDF downloads(10) Cited by()

Related
Proportional views

    Identification and Characterization of a Novel Single Domain Antibody Against Ebola Virus

      Corresponding author: Huajun Zhang, hjzhang@wh.iov.cn
      Corresponding author: Rui Gong, gongr@wh.iov.cn
    • 1. CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
    • 2. University of Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: 

    Ebola virus (EBOV) belongs to the Filoviridae family and causes severe illnesses such as hemorrhagic fever with a high mortality rate up to 90%. Now two antibody drugs termed Inmazeb and Ebanga have been approved for treating EBOV infection. However, clinical studies have demonstrated that the mortality rate of the patients who received these two antibody drugs remains above 30%. Therefore, novel therapeutics with better efficacy is still desired. The isolated human IgG1 constant domain 2 (CH2 domain) has been proposed as a scaffold for the development of C-based single domain antibodies (C-sdAbs) as therapeutic candidates against viral infections and other diseases. Here, we screened and identified a novel C-sdAb termed M24 that targets EBOV glycoprotein (GP) from a C-sdAb phage display library. M24 neutralizes the pseudotype EBOV with IC50 of 0.8 nmol/L (12 ng/mL) and has modest neutralizing activity against authentic EBOV. Epitope determination, including molecular docking and site mutation analysis, discloses that M24 binds to the internal fusion loop (IFL) within GP2, a transmembrane subunit of GP. Interestingly, we found that the binding of M24 to GP at pH 5.5 has dramatically decreased compared to the binding at pH 7.5, which may lead to weak efficacy in the neutralization of authentic EBOV. Since no sdAb against EBOV infection has been reported to date, our results not only give a proof of concept that sdAbs could be utilized for the development of potential therapeutic candidates against EBOV infection, but also provide useful information for the discovery and improvement of anti-EBOV agents.