Citation: Yuhang Zhang, Zhenjiang Zhang, Fan Zhang, Jiwen Zhang, Jun Jiao, Min Hou, Nianchao Qian, Dongming Zhao, Xiaofeng Zheng, Xu Tan. ASFV transcription reporter screening system identifies ailanthone as a broad antiviral compound .VIROLOGICA SINICA, 2023, 38(3) : 459-469.  http://dx.doi.org/10.1016/j.virs.2023.03.004

ASFV transcription reporter screening system identifies ailanthone as a broad antiviral compound

  • African swine fever (ASF) is an acute, highly contagious and deadly viral disease in swine that jeopardizes the worldwide pig industry. Unfortunately, there are no authoritative vaccine and antiviral drug available for ASF control. African swine fever virus (ASFV) is the etiological agent of ASF. Among the ASFV proteins, p72 is the most abundant component in the virions and thus a potential target for anti-ASFV drug design. Here, we constructed a luciferase reporter system driven by the promoter of p72, which is transcribed by the co-transfected ASFV RNA polymerase complex. Using this system, we screened over 3200 natural product compounds and obtained three potent candidates against ASFV. We further evaluated the anti-ASFV effects and proved that among the three candidates, ailanthone (AIL) inhibits the replication of ASFV at the nanomolar concentration (IC50 = 15 nmol/L). Our in vitro experiments indicated that the antiviral effect of AIL is associated with its inhibition of the HSP90-p23 cochaperone. Finally, we showed the antiviral activity of AIL on Zika virus and hepatitis B virus (HBV), which supports that AIL is a potential broad-spectrum antiviral agent.

  • 加载中
  • 10.1016j.virs.2023.03.004-ESM.docx
    1. Alejo, A., Matamoros, T., Guerra, M., Andrés, G., 2018. A Proteomic Atlas of the African Swine Fever Virus Particle. J Virol., 92, e01293-18.

    2. Ali, M., Roe, S., Vaughan, C., Meyer, P., Panaretou, B., Piper, P., Prodromou, C., Pearl, L., 2006. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature, 440, 1013-1017.

    3. Bailly, C., 2020. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytotherapy Res., 34, 2203-2213.

    4. Beck, J., Nassal, M., 2003. Efficient Hsp90-independent in vitro activation by Hsc70 and Hsp40 of duck hepatitis B virus reverse transcriptase, an assumed Hsp90 client protein. J Biol Chem., 278, 36128-36138.

    5. Cackett, G., Sýkora, M., Werner, F., 2020. Transcriptome view of a killer:African swine fever virus. Biochem Soc Trans. 48, 1569-1581.

    6. Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Li, F., Shan, D., Chen, H., Zhang, J., Wang, L., Wen, Z., Wang, X., Guan, Y., Liu, J., Bu, Z., 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci China. Life Sci., 63, 623-634.

    7. Chen, Z., Eggerman, T., Bocharov, A., Baranova, I., Vishnyakova, T., Kurlander, R., Patterson, A., 2017. Heat shock proteins stimulate APOBEC-3-mediated cytidine deamination in the hepatitis B virus. J Biol Chem., 292, 13459-13479.

    8. Ding, H., Yu, X., Hang, C., Gao, K., Lao, X., Jia, Y., Yan, Z., 2020. Ailanthone:A novel potential drug for treating human cancer. Oncol Lett., 20, 1489-1503.

    9. Dixon, L., Chapman, D., Netherton, C., Upton, C., 2013. African swine fever virus replication and genomics. Virus Res., 173, 3-14.

    10. Felts, S., Toft, D., 2003. p23, a simple protein with complex activities. Cell Stress Chaperones, 8, 108-113.

    11. Gaudreault, N., Madden, D., Wilson, W., Trujillo, J., Richt, J., 2020. African Swine Fever Virus:An Emerging DNA Arbovirus. Front Vet Sci., 7, 215.

    12. Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., Liu, Y., Zhang, Y., Xu, T., Wu, X., Wang, Z., 2018. Molecular Characterization of African Swine Fever Virus, China, 2018. Emerg Infect Dis., 24, 2131-2133.

    13. He, Y., Peng, S., Wang, J., Chen, H., Cong, X., Chen, A., Hu, M., Qin, M., Wu, H., Gao, S., Wang, L., Wang, X., Yi, Z., Liu, M., 2016. Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun., 7, 13122.

    14. Hu, J., Flores, D., Toft, D., Wang, X., Nguyen, D., 2004. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol., 78, 13122-13131.

    15. Hu, J., Seeger, C., 1996. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A., 93, 1060-1064.

    16. Li, P., Wei, Y., Mei, M., Tang, L., Sun, L., Huang, W., Zhou, J., Zou, C., Zhang, S., Qin, C., Jiang, T., Dai, J., Tan, X., Zhang, Q., 2018. Integrative Analysis of Zika Virus Genome RNA Structure Reveals Critical Determinants of Viral Infectivity. Cell Host Microbe., 24, 875-886.e875.

    17. Li, Z., Chen, W., Qiu, Z., Li, Y., Fan, J., Wu, K., Li, X., Zhao, M., Ding, H., Fan, S., Chen, J., 2022. African Swine Fever Virus:A Review. Life, 12, 1255.

    18. Liu, Q., Ma, B., Qian, N., Zhang, F., Tan, X., Lei, J., Xiang, Y., 2019. Structure of the African swine fever virus major capsid protein p72. Cell Res., 29, 953-955.

    19. Liu, S., Luo, Y., Wang, Y., Li, S., Zhao, Z., Bi, Y., Sun, J., Peng, R., Song, H., Zhu, D., Sun, Y., Li, S., Zhang, L., Wang, W., Sun, Y., Qi, J., Yan, J., Shi, Y., Zhang, X., Wang, P., Qiu, H., Gao, G., 2019. Cryo-EM Structure of the African Swine Fever Virus. Cell Host Microbe., 26, 836-843.e833.

    20. Malmquist, W., Hay, D., 1960. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res., 21, 104-108.

    21. Mirzakhanyan, Y., Gershon, P., 2017. Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses:Impressions from the Age of Structure. Microbiol Mol Biol Rev., 81, e00010-17.

    22. Naito, T., Momose, F., Kawaguchi, A., Nagata, K., 2007. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol., 81, 1339-1349.

    23. Reed, L.J., Muench, H., 1938. A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. Am J Epidemiol., 27, 493-497.

    24. Roby, J., Esser-Nobis, K., Dewey-Verstelle, E., Fairgrieve, M., Schwerk, J., Lu, A., Soveg, F., Hemann, E., Hatfield, L., Keller, B., Shapiro, A., Forero, A., Stencel-Baerenwald, J., Savan, R., Gale, M., 2020. Flavivirus Nonstructural Protein NS5 Dysregulates HSP90 to Broadly Inhibit JAK/STAT Signaling. Cells, 9, 899.

    25. Rodríguez, J., Salas, M., 2013. African swine fever virus transcription. Virus research, 173, 15-28.

    26. Schopf, F., Biebl, M., Buchner, J., 2017. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol., 18, 345-360.

    27. Srisutthisamphan, K., Jirakanwisal, K., Ramphan, S., Tongluan, N., Kuadkitkan, A., Smith, D., 2018. Hsp90 interacts with multiple dengue virus 2 proteins. Sci Rep., 8, 4308.

    28. Taguwa, S., Yeh, M., Rainbolt, T., Nayak, A., Shao, H., Gestwicki, J., Andino, R., Frydman, J., 2019. Zika Virus Dependence on Host Hsp70 Provides a Protective Strategy against Infection and Disease. Cell Rep., 26, 906-920.e903.

    29. Taipale, M., Jarosz, D., Lindquist, S., 2010. HSP90 at the hub of protein homeostasis:emerging mechanistic insights. Nat Rev Mol Cell Biol., 11, 515-528.

    30. Tang, S., Ma, X., Lu, J., Zhang, Y., Liu, M., Wang, X., 2019. Preclinical toxicology and toxicokinetic evaluation of ailanthone, a natural product against castration-resistant prostate cancer, in mice. Fitoterapia, 136, 104161.

    31. Vashist, S., Urena, L., Gonzalez-Hernandez, M., Choi, J., De Rougemont, A., Rocha-Pereira, J., Neyts, J., Hwang, S., Wobus, C., Goodfellow, I., 2015. Molecular chaperone Hsp90 is a therapeutic target for noroviruses. J Virol., 89, 6352-6363.

    32. Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., Li, F., Wang, J., Bu, Z., Rao, Z., Wang, X., 2019. Architecture of African swine fever virus and implications for viral assembly. Science., 366, 640-644.

    33. Wang, Y., Kang, W., Yang, W., Zhang, J., Li, D., Zheng, H., 2021. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression:A Review. Front Immunol., 12, 715582.

    34. Xiang, C., Du, Y., Meng, G., Soon Yi, L., Sun, S., Song, N., Zhang, X., Xiao, Y., Wang, J., Yi, Z., Liu, Y., Xie, B., Wu, M., Shu, J., Sun, D., Jia, J., Liang, Z., Sun, D., Huang, Y., Shi, Y., Xu, J., Lu, F., Li, C., Xiang, K., Yuan, Z., Lu, S., Deng, H., 2019. Long-term functional maintenance of primary human hepatocytes in vitro. Science, 364, 399-402.

    35. You, S., Liu, T., Zhang, M., Zhao, X., Dong, Y., Wu, B., Wang, Y., Li, J., Wei, X., Shi, B., 2021. African swine fever outbreaks in China led to gross domestic product and economic losses. Nature Food, 2, 802-808.

    36. Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., Guan, Y., Chen, W., Wang, X., He, X., Bu, Z., 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microbes Infect., 8, 438-447.

    37. Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., Zhang, S., Cao, P., Li, X., Tian, K., Qiu, H., Hu, R., 2018. Emergence of African Swine Fever in China, 2018. Transbound Emerg Dis., 65, 1482-1484.

  • 加载中

Article Metrics

Article views(2524) PDF downloads(12) Cited by()

Related
Proportional views

    ASFV transcription reporter screening system identifies ailanthone as a broad antiviral compound

      Corresponding author: Dongming Zhao, zhaodongming@caas.cn
      Corresponding author: Xiaofeng Zheng, zheng.x@hunau.edu.cn
      Corresponding author: Xu Tan, mosaictan@hotmail.com
    • a. College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
    • b. State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China;
    • c. Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China;
    • d. Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601 China

    Abstract: African swine fever (ASF) is an acute, highly contagious and deadly viral disease in swine that jeopardizes the worldwide pig industry. Unfortunately, there are no authoritative vaccine and antiviral drug available for ASF control. African swine fever virus (ASFV) is the etiological agent of ASF. Among the ASFV proteins, p72 is the most abundant component in the virions and thus a potential target for anti-ASFV drug design. Here, we constructed a luciferase reporter system driven by the promoter of p72, which is transcribed by the co-transfected ASFV RNA polymerase complex. Using this system, we screened over 3200 natural product compounds and obtained three potent candidates against ASFV. We further evaluated the anti-ASFV effects and proved that among the three candidates, ailanthone (AIL) inhibits the replication of ASFV at the nanomolar concentration (IC50 = 15 nmol/L). Our in vitro experiments indicated that the antiviral effect of AIL is associated with its inhibition of the HSP90-p23 cochaperone. Finally, we showed the antiviral activity of AIL on Zika virus and hepatitis B virus (HBV), which supports that AIL is a potential broad-spectrum antiviral agent.

    Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return