Citation: Han Xiao, Hengrui Hu, Yijia Guo, Jiang Li, Le Wen, Wen-Bo Zeng, Manli Wang, Min-Hua Luo, Zhihong Hu. Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2 .VIROLOGICA SINICA, 2023, 38(3) : 373-379.  http://dx.doi.org/10.1016/j.virs.2023.03.005

Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2

  • Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.

  • 加载中
  • 10.1016j.virs.2023.03.005-ESM.docx
    1. Abd-Aziz N, Poh CL. 2021. Development of oncolytic viruses for cancer therapy. Translational Research, 237:98-123.

    2. Aldrak N, Alsaab S, Algethami A, Bhere D, Wakimoto H, Shah K, Alomary MN, Zaidan N. 2021. Oncolytic herpes simplex virus-based therapies for cancer. Cells, 10:1541.

    3. Bradshaw MJ, Venkatesan A. 2016. Herpes simplex virus-1 encephalitis in adults:Pathophysiology, diagnosis, and management. Neurotherapeutics, 13:493-508.

    4. Charron AJ, Ward SL, North BJ, Ceron S, Leib DA. 2019. The us11 gene of herpes simplex virus 1 promotes neuroinvasion and periocular replication following corneal infection. Journal of Virology, 93:e02246-02218.

    5. Chou J, Kern ER, Whitley RJ, Roizman B. 1990. Mapping of herpes-simplex virus-1 neurovirulence to gamma-134.5, a gene nonessential for growth in culture. Science, 250:1262-1266.

    6. Dix RD, McKendall RR, Baringer JR. 1983. Comparative neurovirulence of herpes simplex virus type 1 strains after peripheral or intracerebral inoculation of balb/c mice. Infection and Immunity, 40:103-112.

    7. Dogrammatzis C, Waisner H, Kalamvoki M. 2020. "Non-essential" proteins of hsv-1 with essential roles in vivo:A comprehensive review. Viruses, 13:17.

    8. Dridi S, Richerioux N, Gonzalez Suarez CE, Vanharen M, Sanabria-Solano C, Pearson A. 2018. A mutation in the <i>ul24</i> gene abolishes expression of the newly identified ul24.5 protein of herpes simplex virus 1 and leads to an increase in pathogenicity in mice. Journal of Virology, 92:e00671-00618.

    9. Garzotti M, Hamdan M. 1998. Liquid chromatography tandem mass spectrometry of synthesis products associated with the viral protein u(s)11. Rapid Communications in Mass Spectrometry, 12:843-848.

    10. Goldin AL, Sandri-Goldin RM, Levine M, Glorioso JC. 1981. Cloning of herpes simplex virus type 1 sequences representing the whole genome. Journal of Virology, 38:50-58.

    11. Grzesik P, Ko N, Oldfield LM, Vashee S, Desai PJ. 2018. Rapid and efficient in vitro excision of bac sequences from herpesvirus genomes using cre-mediated recombination. Journal of Virological Methods, 261:67-70.

    12. Hou Z, Zhou Z, Wang Z, Xiao G. 2016. Assembly of long DNA sequences using a new synthetic escherichia coli-yeast shuttle vector. Virologica Sinica, 31:160-167.

    13. Hu H, Pan K, Shang Y, Guo Y, Xiao H, Deng F, Wang M, Hu Z. 2021. Multiloci manipulation of baculovirus genome reveals the pivotal role of homologous regions in viral DNA replication, progeny production, and enhancing transcription. ACS Synthetic Biology, 11:144-153.

    14. Kaufman HL, Kohlhapp FJ, Zloza A. 2015. Oncolytic viruses:A new class of immunotherapy drugs. Nature Reviews Drug Discovery, 14:642-662.

    15. Kouprina N, Larionov V. 2008. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast saccharomyces cerevisiae. Nature Protocols, 3:371-377.

    16. Kuny CV, Szpara ML. 2022. Alphaherpesvirus genomics:Past, present and future. Current Issues in Molecular Biology:41-80.

    17. Li YD, Xu JM, Liu YF, Zhu J, Liu N, Zeng WB, Huang N, Rasch MJ, Jiang HF, Gu X, Li X, Luo MH, Li CY, Teng JL, Chen JG, Zeng SQ, Lin LN, Zhang XH. 2017. A distinct entorhinal cortex to hippocampal ca1 direct circuit for olfactory associative learning. Nature Neuroscience, 20:559-570.

    18. Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, Griffin DE, Brindle HE, Solomon T, Brown AS, Van Riel D, Wolthers KC, Pajkrt D, Wohlsein P, Martina BEE, Baumgärtner W, Verjans GM, Osterhaus ADME. 2016. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathologica, 131:159-184.

    19. Macdonald SJ, Mostafa HH, Morrison LA, Davido DJ. 2012a. Genome sequence of herpes simplex virus 1 strain kos. Journal of Virology, 86:6371-6372.

    20. Macdonald SJ, Mostafa HH, Morrison LA, Davido DJ. 2012b. Genome sequence of herpes simplex virus 1 strain mckrae. Journal of Virology, 86:9540-9541.

    21. McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, Scott JE, Taylor P. 1988. The complete DNA-sequence of the long unique region in the genome of herpes-simplex virus type-1. Journal of General Virology, 69:1531-1574.

    22. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH. 1997. Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences, 94:14759-14763.

    23. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. 1995. Attenuated multi-mutated herpes-simplex virus-1 for the treatment of malignant gliomas. Nature Medicine, 1:938-943.

    24. Munch-Petersen B. 2010. Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2:A mini review. Nucleosides Nucleotides & Nucleic Acids, 29:363-369.

    25. Nassi JJ, Cepko CL, Born RT, Beier KT. 2015. Neuroanatomy goes viral! Frontiers in Neuroanatomy, 9:80.

    26. Oldfield LM, Grzesik P, Voorhies AA, Alperovich N, MacMath D, Najera CD, Chandra DS, Prasad S, Noskov VN, Montague MG, Friedman RM, Desai PJ, Vashee S. 2017. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proceedings of the National Academy of Sciences, 114:E8885-E8894.

    27. Perng, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL. 1994. An improved method for cloning portions of the repeat regions of herpes-simplex virus type-1. Journal of Virological Methods, 46:111-116.

    28. Perng, Mott KR, Osorio N, Yukht A, Salina S, Nguyen Q-H, Nesburn AB, Wechsler SL. 2002. Herpes simplex virus type 1 mutants containing the kos strain icp34.5 gene in place of the mckrae icp34.5 gene have mckrae-like spontaneous reactivation but non-mckrae-like virulence. Journal of General Virology, 83:2933-2942.

    29. Roizman B. 1996. The function of herpes simplex virus genes:A primer for genetic engineering of novel vectors. Proceedings of the National Academy of Sciences, 93:11307-11312.

    30. Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. 2016. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. Journal of Antimicrobial Chemotherapy, 71:6-16.

    31. Shang Y, Wang M, Xiao G, Wang X, Hou D, Pan K, Liu S, Li J, Wang J, Arif BM, Vlak JM, Chen X, Wang H, Deng F, Hu Z. 2017. Construction and rescue of a functional synthetic baculovirus. Acs Synthetic Biology, 6:1393-1402.

    32. Su P, Ying M, Han Z, Xia J, Jin S, Li Y, Wang H, Xu F. 2020. High-brightness anterograde transneuronal hsv1 h129 tracer modified using a trojan horse-like strategy. Molecular Brain, 13:5.

    33. Su P, Wang H, Xia J, Zhong X, Hu L, Li Y, Li Y, Ying M, Xu F. 2019. Evaluation of retrograde labeling profiles of hsv1 h129 anterograde tracer. Journal of Chemical Neuroanatomy, 100:101662.

    34. Sun N, Cassell MD, Perlman S. 1996. Anterograde, transneuronal transport of herpes simplex virus type 1 strain h129 in the murine visual system. Journal of Virology, 70:5405-5413.

    35. Szpara, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, Enquist LW, Legendre M, Davison AJ. 2014. Evolution and diversity in human herpes simplex virus genomes. Journal of Virology, 88:1209-1227.

    36. Szpara M, Parsons L, Enquist LW. 2010. Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. Journal of Virology, 84:5303-5313.

    37. Tian Y, Xie D, Yang L. 2022. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduction and Targeted Therapy, 7:117.

    38. Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. 2022. Intratumoral oncolytic herpes virus g47∆ for residual or recurrent glioblastoma:A phase 2 trial. Nature Medicine, 28:1630-1639.

    39. Vashee S, Stockwell TB, Alperovich N, Denisova EA, Gibson DG, Cady KC, Miller K, Kannan K, Malouli D, Crawford LB, Voorhies AA, Bruening E, Caposio P, Fruh K. 2017. Cloning, assembly, and modification of the primary human cytomegalovirus isolate toledo by yeast-based transformation-associated recombination. Msphere, 2:17.

    40. Whitley RJ, Roizman B. 2001. Herpes simplex virus infections. Lancet, 357:1513-1518.

    41. Xu XM, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng WB, Hui M, Semler BL, Sandri-Goldin RM. 2020. Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron, 107:1029-1047.

    42. Yang H, Xiong F, Song Y-G, Jiang H-F, Qin H-B, Zhou J, Lu S, Grieco SF, Xu X, Zeng W-B, Zhao F, Luo M-H. 2020. Hsv-1 h129-derived anterograde neural circuit tracers:Improvements, production, and applications. Neuroscience Bulletin, 37:701-719.

    43. Yang H, Xiong F, Qin H-B, Yu Q-T, Sun J-Y, Zhao H-W, Li D, Zhou Y, Zhang F-K, Zhu X-W, Wu T, Jiang M, Xu X, Lu Y, Shen H-J, Zeng W-B, Zhao F, Luo M-H. 2022. A novel h129-based anterograde monosynaptic tracer exhibits features of strong labeling intensity, high tracing efficiency, and reduced retrograde labeling. Molecular Neurodegeneration, 17:6.

    44. Yu K, Ahrens S, Zhang X, Schiff H, Ramakrishnan C, Fenno L, Deisseroth K, Zhao F, Luo M-H, Gong L, He M, Zhou P, Paninski L, Li B. 2017. The central amygdala controls learning in the lateral amygdala. Nature Neuroscience, 20:1680-1685.

    45. Zeng W-B, Jiang H-F, Gang Y-D, Song Y-G, Shen Z-Z, Yang H, Dong X, Tian Y-L, Ni R-J, Liu Y, Tang N, Li X, Jiang X, Gao D, Androulakis M, He X-B, Xia H-M, Ming Y-Z, Lu Y, Zhou J-N, Zhang C, Xia X-S, Shu Y, Zeng S-Q, Xu F, Zhao F, Luo M-H. 2017. Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain h129. Molecular Neurodegeneration, 12:38.

  • 加载中

Article Metrics

Article views(1255) PDF downloads(9) Cited by()

Related
Proportional views

    Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2

      Corresponding author: Wen-Bo Zeng, zengwb@wh.iov.cn
      Corresponding author: Manli Wang, wangml@wh.iov.cn
      Corresponding author: Min-Hua Luo, luomh@wh.iov.cn
      Corresponding author: Zhihong Hu, huzh@wh.iov.cn
    • a. State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b. University of Chinese Academy of Sciences, Beijing, 100049, China

    Abstract: Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.

    Reference (45) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return