Citation: Xiang Fang, Guoliang Lu, Yanchun Deng, Sa Yang, Chunsheng Hou, Peng Gong. Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding .VIROLOGICA SINICA, 2023, 38(4) : 531-540.  http://dx.doi.org/10.1016/j.virs.2023.05.002

Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding

  • The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.

  • 加载中
    1. Appleby, T.C., Perry, J.K., Murakami, E., Barauskas, O., Feng, J., Cho, A., Fox, D., 3rd, Wetmore, D.R., Mcgrath, M.E., Ray, A.S., Sofia, M.J., Swaminathan, S.,Edwards, T.E., 2015. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 347, 771-775.

    2. Bailey, L., Gibbs, A.J.,Woods, R.D., 1963. Two Viruses from Adult Honey Bees (Apis Mellifera Linnaeus). Virology, 21, 390-395.

    3. Baltimore, D., Eggers, H.J., Franklin, R.M.,Tamm, I., 1963. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proc Natl Acad Sci U S A, 49, 843-849.

    4. Beese, L.S.,Steitz, T.A., 1991. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I:a two metal ion mechanism. EMBO J, 10, 25-33.

    5. Bi, P., Shu, B.,Gong, P., 2017. Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics. Virol Sin, 32, 548-552.

    6. Bruenn, J.A., 2003. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res, 31, 1821-1829.

    7. Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T.,Warren, G.L., 1998. Crystallography & NMR system:A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 54, 905-921.

    8. Chiu, J., Tillett, D., Dawes, I.W.,March, P.E., 2008. Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73, 195-198.

    9. Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., Martinson, V., Vanengelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S.K., Simons, J.F., Egholm, M., Pettis, J.S.,Lipkin, W.I., 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318, 283-287.

    10. De Miranda, J.R., Cordoni, G.,Budge, G., 2010. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol, 103 Suppl 1, S30-47.

    11. De Miranda, J.R., Drebot, M., Tyler, S., Shen, M., Cameron, C.E., Stoltz, D.B.,Camazine, S.M., 2004. Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus. J Gen Virol, 85, 2263-2270.

    12. Egloff, M.P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., Ferron, F.,Canard, B., 2007. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372, 723-736.

    13. Emsley, P.,Cowtan, K., 2004. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 60, 2126-2132.

    14. Frias-Staheli, N., Giannakopoulos, N.V., Kikkert, M., Taylor, S.L., Bridgen, A., Paragas, J., Richt, J.A., Rowland, R.R., Schmaljohn, C.S., Lenschow, D.J., Snijder, E.J., Garcia-Sastre, A.,Virgin, H.W.T., 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe, 2, 404-416.

    15. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L.W., Wang, Q., Lou, Z.,Rao, Z., 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368, 779-782.

    16. Gong, P., 2021. Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses. Enzymes, 49, 215-233.

    17. Gong, P.,Peersen, O.B., 2010. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A, 107, 22505-22510.

    18. Gorbalenya, A.E., Pringle, F.M., Zeddam, J.L., Luke, B.T., Cameron, C.E., Kalmakoff, J., Hanzlik, T.N., Gordon, K.H.,Ward, V.K., 2002. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol, 324, 47-62.

    19. Govan, V.A., Leat, N., Allsopp, M.,Davison, S., 2000. Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology, 277, 457-463.

    20. Hansen, J.L., Long, A.M.,Schultz, S.C., 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure, 5, 1109-1122.

    21. Hendrickson, W.A., 2014. Anomalous diffraction in crystallographic phase evaluation. Q Rev Biophys, 47, 49-93.

    22. Hillen, H.S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D.,Cramer, P., 2020. Structure of replicating SARS-CoV-2 polymerase. Nature, 584, 154-156.

    23. Jia, H.,Gong, P., 2019. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol, 10, 1945.

    24. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.a.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P.,Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.

    25. Lanzi, G., De Miranda, J.R., Boniotti, M.B., Cameron, C.E., Lavazza, A., Capucci, L., Camazine, S.M.,Rossi, C., 2006. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J Virol, 80, 4998-5009.

    26. Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Overkleeft, H.S., Van Veelen, P.A., Samborskiy, D.V., Kravchenko, A.A., Leontovich, A.M., Sidorov, I.A., Snijder, E.J., Posthuma, C.C.,Gorbalenya, A.E., 2015. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res, 43, 8416-8434.

    27. Lesburg, C.A., Cable, M.B., Ferrari, E., Hong, Z., Mannarino, A.F.,Weber, P.C., 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol, 6, 937-943.

    28. Li, R., Wang, M.,Gong, P., 2022. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res, 10.1093/nar/gkac1133.

    29. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., Mccoy, A.J., Moriarty, N.W., Oeffner, R.D., Poon, B.K., Prisant, M.G., Read, R.J., Richardson, J.S., Richardson, D.C., Sammito, M.D., Sobolev, O.V., Stockwell, D.H., Terwilliger, T.C., Urzhumtsev, A.G., Videau, L.L., Williams, C.J.,Adams, P.D., 2019. Macromolecular structure determination using X-rays, neutrons and electrons:recent developments in Phenix. Acta Crystallographica Section D-Structural Biology, 75, 861-877.

    30. Liu, W., Shi, X.,Gong, P., 2018. A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase. Nucleic Acids Res, 46, 10840-10854.

    31. Lu, G.,Gong, P., 2013. Crystal Structure of the Full-Length Japanese Encephalitis Virus NS5 Reveals a Conserved Methyltransferase-Polymerase Interface. PLoS Pathog, 9, e1003549.

    32. Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y., Peretz, Y., Edelbaum, O., Tanne, E.,Sela, I., 2007. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel:evidence for diversity due to intra- and inter-species recombination. Journal of General Virology, 88, 3428-3438.

    33. Nakashima, N.,Nakamura, Y., 2008. Cleavage sites of the "P3 region" in the nonstructural polyprotein precursor of a dicistrovirus. Archives of Virology, 153, 1955-1960.

    34. Neufeld, K.L., Richards, O.C.,Ehrenfeld, E., 1991. Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J Biol Chem, 266, 24212-24219.

    35. Otwinowski, Z.,Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 276, 307-326.

    36. Paul, A.V.,Wimmer, E., 2015. Initiation of protein-primed picornavirus RNA synthesis. Virus Res, 206, 12-26.

    37. Peersen, O.B., 2019. A Comprehensive Superposition of Viral Polymerase Structures. Viruses, 11.

    38. Reddy, K.E., Noh, J.H., Kim, Y.H., Yoo, M.S., Doan, H.T.T., Ramya, M., Jung, S.C., Quyen, D.V.,Kang, S.W., 2013. Analysis of the nonstructural and structural polyprotein regions, and complete genome sequences of Israel acute paralysis viruses identified from honeybees (Apis mellifera) in Korea. Virology, 444, 211-217.

    39. Reich, E., Franklin, R.M., Shatkin, A.J.,Tatum, E.L., 1961. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science, 134, 556-557.

    40. Shu, B.,Gong, P., 2016. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci U S A, 113, E4005-4014.

    41. Shu, B.,Gong, P., 2017. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase. RNA Biol, 10.1080/15476286.2017.1300221, 1-6.

    42. Terwilliger, T.C., Adams, P.D., Read, R.J., Mccoy, A.J., Moriarty, N.W., Grosse-Kunstleve, R.W., Afonine, P.V., Zwart, P.H.,Hung, L.W., 2009. Decision-making in structure solution using Bayesian estimates of map quality:the PHENIX AutoSol wizard. Acta Crystallographica Section D-Biological Crystallography, 65, 582-601.

    43. Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.W., Read, R.J.,Adams, P.D., 2008. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallographica Section D-Biological Crystallography, 64, 61-69.

    44. Theobald, D.L.,Wuttke, D.S., 2008. Accurate structural correlations from maximum likelihood superpositions. PLoS Comput Biol, 4, e43.

    45. Thompson, A.A.,Peersen, O.B., 2004. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J, 23, 3462-3471.

    46. Tong, L.,Rossmann, M.G., 1997. Rotation function calculations with GLRF program. Methods Enzymol, 276, 594-611.

    47. Vives-Adrian, L., Lujan, C., Oliva, B., Van Der Linden, L., Selisko, B., Coutard, B., Canard, B., Van Kuppeveld, F.J., Ferrer-Orta, C.,Verdaguer, N., 2014. The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol, 88, 5595-5607.

    48. Walker, A.P., Fan, H., Keown, J.R., Knight, M.L., Grimes, J.M.,Fodor, E., 2021. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids Res, 49, 13019-13030.

    49. Wang, M., Li, R., Shu, B., Jing, X., Ye, H.Q.,Gong, P., 2020. Stringent control of the RNA-dependent RNA polymerase translocation revealed by multiple intermediate structures. Nat Commun, 11, 2605.

    50. Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., Liu, Z., Yang, H., Lou, Z., Jiang, B., Guddat, L.W., Gong, P.,Rao, Z., 2020. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 182, 417-428 e413.

    51. Wu, J., Lu, G., Zhang, B.,Gong, P., 2015. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J Virol, 89, 249-261.

    52. Wu, J., Wang, X., Liu, Q., Lu, G.,Gong, P., 2023. Structural basis of transition from initiation to elongation in de novo viral RNA-dependent RNA polymerases. Proc Natl Acad Sci U S A, 120, e2211425120.

    53. Yang, J., Jing, X., Yi, W., Li, X.D., Yao, C., Zhang, B., Zheng, Z., Wang, H.,Gong, P., 2021. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res, 49, 1567-1580.

    54. Zhao, Y., Soh, T.S., Zheng, J., Chan, K.W., Phoo, W.W., Lee, C.C., Tay, M.Y., Swaminathan, K., Cornvik, T.C., Lim, S.P., Shi, P.Y., Lescar, J., Vasudevan, S.G.,Luo, D., 2015. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog, 11, e1004682.

  • 加载中

Article Metrics

Article views(1571) PDF downloads(11) Cited by()

Related
Proportional views

    Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding

      Corresponding author: Chunsheng Hou, houchunsheng@caas.cn
      Corresponding author: Peng Gong, gongpeng@wh.iov.cn
    • a. Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China;
    • b. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China;
    • c. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • d. Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China;
    • e. Hubei Jiangxia Laboratory, Wuhan, 430207, China

    Abstract: The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.

    Reference (54) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return