Erlandson Martin A.. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology[J]. Virologica Sinica, 2009, 24(5): 458-469. doi: 10.1007/s12250-009-3052-1
Citation: Erlandson Martin A.. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology .VIROLOGICA SINICA, 2009, 24(5) : 458-469.  http://dx.doi.org/10.1007/s12250-009-3052-1

Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

  • Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark “hot spots” of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.

Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

  • Corresponding author: Erlandson Martin A., martin.erlandson@agr.gc.ca
  • Received Date: 31 January 2009
    Accepted Date: 15 May 2009
  • Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark “hot spots” of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.

  • 加载中
    1. Adams J R, McClintock J T. 1991. Nuclear polyhedrosis viruses in insects. In: Atlas of Invertebrate Viruses (Adams J R, Bonami J R. ed. ), Boca Raton: CRC Press, FL, USA. p89-204.

    2. Blissard G W, Rohrmann G F. 1990. Baculovirus diversity and molecular biology. Ann Rev Entomol, 35: 127-155.
        doi: 10.1146/annurev.en.35.010190.001015

    3. Brown D A, Evans H F, Allen C J, et al. 1981. Biological and biochemical investigations of five European isolates of Mamestra brassicae nuclear polyhedrosis virus. Arch Virol, 69, 209-217.
        doi: 10.1007/BF01317336

    4. Bull J C, Godfray H C, O'Reilly D R. 2001. Persistence of an occlusion-negative recombinant nucleopolyhedrovirus in Trichoplusia ni indicates high multiplicity of cellular infection. Appl Environ Microbiol, 67: 5204-5209.
        doi: 10.1128/AEM.67.11.5204-5209.2001

    5. Chen X, IJkel W F, Tarchini R, et al. 2001. The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome. J Gen Virol, 82: 241-257.
        doi: 10.1099/0022-1317-82-1-241

    6. Cooper D, Cory J S, Myers J H. 2003a. Hierarchical spatial structure of genetically variable nucleopolyhe-droviruses infecting cyclic populations of western tent caterpillars. Mol Ecol, 12: 881-890.
        doi: 10.1046/j.1365-294X.2003.01785.x

    7. Cooper D, Cory J S, Theilmann D A, et al. 2003b. Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecol Entomol, 28: 41-50.
        doi: 10.1046/j.1365-2311.2003.00474.x

    8. Cory J S, Hails R S, Sait S M. 1997. Baculovirus ecology. In: The Baculoviruses(Miller L K. ed. ), New York: Plenum Press. p301-339.

    9. Cory J S, Green B M, Paul R K, et al. 2005. Genotypic and phenotypic diversity of a baculovirus population within an individual insect host. J Invert Pathol, 89: 101-111.
        doi: 10.1016/j.jip.2005.03.008

    10. Crook N E. 1986. Restriction enzyme analysis of granulosis viruses isolated from Artogeia rapae and Pieris brassicae. J Gen Virol, 67: 781-787.
        doi: 10.1099/0022-1317-67-4-781

    11. Crook N E, Spencer R A, Payne C C, et al. 1985. Variation in Cydia pomonella granulosis virus isolates and physical maps of the DNA from three variants. J Gen Virol, 66: 2423-2430.
        doi: 10.1099/0022-1317-66-11-2423

    12. Crozier G, Ribeiro H C T. 1992. Recombination as a possible major cause of genetic heterogeneity in Anticarsia gemmatalis nuclear polyhedrosis virus wild populations. Virus Res, 26: 183-196.
        doi: 10.1016/0168-1702(92)90012-X

    13. Eberle K E, Sayed S, Rezapanah M, et al, 2009. Diversity and evolution of the Cydia pomonella granulovirus. J Gen Virol, 90: 662-671.
        doi: 10.1099/vir.0.006999-0

    14. Ebling P M, Kaupp W J. 1995. Differentiation and comparative activity of six isolates of nuclear polyhedrosis virus from the forest tent caterpillar, Malacosoma disstria, Hubner. J Invert Pathol, 66: 198-200.
        doi: 10.1006/jipa.1995.1084

    15. Erlandson M A. 1990. Biological and biochemical comparison of Mamestra configurata and Mamestra brassicae nuclear polyhedrosis virus isolates pathogenic for the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). J Invert Pathol, 56: 47-56.
        doi: 10.1016/0022-2011(90)90143-T

    16. Erlandson M A, Baldwin D, Havereon M, et al. 2006. Isolation and characterization of plaque purified strains of Malacosoma disstria nucleopolyhedrovirus. Can J Microbiol, 52: 266-271.
        doi: 10.1139/W05-116

    17. Fan Q, Li S, Wang L, et al. 2007. The genome sequence of the mulitnucleocapsid nucleopolyhedrovirus of the Chinese oak silkworm Antherea pernyi. Virology, 366: 304-315.
        doi: 10.1016/j.virol.2007.04.027

    18. Figueiredo E, Muñzo D, Murillo R, et al. 2009. Diversity of Iberian nucleopolyhedrovirus wild-type isolates infecting Helicoverpa armigera (Lepidoptera: Noctuidae). Biological Control, 50, 43-49.
        doi: 10.1016/j.biocontrol.2009.02.005

    19. Goto C, Minobe Y, Iizuka T. 1992. Restriction analysis and mapping of the genomes of granulosis viruses isolated from Xestia c-nigrum and five other noctuid species. J GenVirol, 73: 1491-1497.

    20. Graham R I, Tyne W I, Possee R D, et al.2004. Genetically variable nucleopolyhedroviruses isolated from spatially separate populations of the winter moth Operophtera brumata (Lepidoptera: Geometridae) in Orkney. J Invert Pathol, 87: 29-38.
        doi: 10.1016/j.jip.2004.06.002

    21. Harrison R L, Puttler B, Popham H J R. 2008. Genomic sequence analysis of a fast-killing isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus. J Gen Virol, 89: 775-790.
        doi: 10.1099/vir.0.83566-0

    22. Hitchman R B, Hodgson D J, King L A, et al. 2007. Host mediated selection of pathogen genotypes as a mechanism for the maintenance of baculovirus diversity in the field. J Invert Pathol, 94, 153-162.
        doi: 10.1016/j.jip.2006.10.002

    23. Hodgson D J, Vanbergen A J, Hartley S E, et al. 2002. Differential selection of baculovirus genotypes mediated by different species of host food plant. Ecol Lett, 5: 512-518.
        doi: 10.1046/j.1461-0248.2002.00338.x

    24. Hodgson D J, Vanbergen A J, Watt A D, et al. 2001. Phenotypic variation between naturally co-existing genotypes of a Lepidopteran baculovirus. Evol Ecol Res, 3: 687-701.

    25. Jehle J A, Fritsch E, Huber J, et al. 2003. Intra-specific and inter-specific recombination of tortricid-specific granuloviruses during co-infection in insect larvae. Arch Virol, 148: 1317-1333.

    26. Jehle J A, Blissard G W, Bonning B C, et al. 2006. On theclassification and nomenclature of baculoviruses: a proposal for revision. Arch Virol, 151, 1257-1266.
        doi: 10.1007/s00705-006-0763-6

    27. Jia F, Xu J, Nie Y C, et al. 2003. Comparison of Heliothis armigera NPV VHA273 wild isolate with its clone. Viroligica Sinica, 18: 241-245.

    28. Kamiya K, Zhu J, Murata M, et al. 2004. Cloning and comparative characterization of three distinct nucleopoly-hedroviruses isolated from the common cutworm, Spodop-tera litura (Lepidoptera: Noctuidae) in Japan. Biol Contr, 31: 38-48.
        doi: 10.1016/j.biocontrol.2004.04.003

    29. Keddie A B, Erlandson M A. 1995. Characterization of a nuclear polyhedrosis virus from the forest tent caterpillar, Malacosoma disstria. J Invert Pathol, 65: 43-47.
        doi: 10.1006/jipa.1995.1006

    30. Knell J D, Summers M D. 1981. Investigation of genetic heterogeneity in wild isolates of Spodoptera frugiperda nuclear polyhedrosis virus by restriction endonuclease analysis of plaque-purified mutants. Virology, 112: 190-197.
        doi: 10.1016/0042-6822(81)90624-3

    31. Kolodny-Hirsch D M, Van Beek N A M. 1997. Selection of a morphological variant of Autographa californica nuclear polyhedrosis virus with increased virulence following serial passage in Plutella xylostella. J Invert Pathol, 69: 205-211.
        doi: 10.1006/jipa.1997.4659

    32. Lee H H, Miller L K. 1978. Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol, 27: 754-767.

    33. Li L, Donly C, Li Q, et al. 2002. Identification and genomic analysis of a second species of nucleopoly-hedrovirus isolated from Mamestra configurata. Virology, 297: 226-244.
        doi: 10.1006/viro.2002.1411

    34. Li L, Li Q, Willis L G, et al. 2005. Complete Comparative Genomic Analysis of Two Field Isolates of Mamestra configurata Nucleopolyhedrovirus-A. J Gen Virol, 86: 91-105
        doi: 10.1099/vir.0.80488-0

    35. Li Q, Donly C, Li L, et al. 2002. Sequence and organization of the Mamestra configurata nucleopoly-hedrovirus genome. Virology, 294, 106-121.
        doi: 10.1006/viro.2001.1313

    36. López Ferber M, Argaud O, Croizier L, et al. 2001. Diversity, distribution, and mobility of bro gene sequences in Bombyx mori nucleopolyhedrovirus. Virus Genes, 22: 247-254.
        doi: 10.1023/A:1011193603093

    37. Lynn D E, Shapiro M, Dougherty E M. 1993. Selection and screening of clonal isolates of the Abington strain of gypsy moth nuclear polyhedrosis virus. J Invert Pathol, 62: 191-195.
        doi: 10.1006/jipa.1993.1095

    38. Maeda S, Kamita S G, Kondo A. 1993. Host range expansion of Autographa califomica nuclear polyhedrosis virus (NPV) following recombination of a 0.6 kbp DNA fragment originating from Bombyx mori NPV. J Virol, 67: 6234-6238.

    39. McIntosh A H, Rice W C, Ignoffo C M. 1987. Genotypic variants in wild-type populations of baculovirus. In Biotechnology in Invertebrate Pathology and Cell Culture (Maramorosch K. ed. ), New York: Academic Press, p305-325.

    40. Muñoz D, Castillejo J I, Caballero P. 1998. Naturally occurring deletion mutants are parasitic genotypes in a wild-type nucleopolyhedrovirus population of Spodoptera exigua. Appl Environ Microbiol, 64: 4372-4377.

    41. Muñoz D, Murillo R, Krell P J, et al. 1999. Four genotypic variants of a Spodoptera exigua Nucleopoly-hedrovirus (Se-SP2) are distinguished by a hypervariable genomic region. Virus Res, 59: 61-74.
        doi: 10.1016/S0168-1702(98)00125-7

    42. Muñoz D, Caballero P. 2000. Persistence and effects of parasitic genotypes in a mixed population of the Spodop-tera exigua nucleopolyhedrovirus. Biol Contr, 19: 259-264.
        doi: 10.1006/bcon.2000.0864

    43. Nie Z M, Zhang Z F, Wang D, et al. 2007. Complete sequence and organization of Anteraea pernyi nucleopoly-hedrovirus, a dr-rich baculovirus. BMC Genomics, 8: 248
        doi: 10.1186/1471-2164-8-248

    44. Ogembo J G, Chaeychomsri S, Kamiya K, et al. 2007. Cloning and comparative characterization of nucleopoly-hedroviruses isolated from African bollworm, Helicoverpa armigera, (Lepidoptera: Noctudiae) in different geographic regions. J Insect Biotechnol Sericol, 76: 39-49.

    45. Pijlman G P, van den Born E, Martens D E, et al. 2001. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283:132-138.
        doi: 10.1006/viro.2001.0854

    46. Shapiro D I, Fuxa J R, Braymer HD, et al. 1991. DNA restriction polymorphism in wild isolates of Spodoptera frugiperda nuclear polyhedrosis virus. J Invert Pathol, 58: 96-105.
        doi: 10.1016/0022-2011(91)90167-O

    47. Simón O, Williams T, López-Ferber M, et al. 2004. Genetic structure of a Spodoptera frugiperda nucleopoly-hedrovirus population: High prevalence of deletion genotypes. Appl Environ Microbiol, 70: 5579-5588.
        doi: 10.1128/AEM.70.9.5579-5588.2004

    48. Simón O, Williams T, López-Ferber M, et al. 2005. Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population. Appl Environ Microbiol, 71: 4254-4262.
        doi: 10.1128/AEM.71.8.4254-4262.2005

    49. Smith I R L, Crook N E. 1988. In vivo isolation of baculovirus genotypes. Virology, 166: 240-244.
        doi: 10.1016/0042-6822(88)90165-1

    50. Smith G E, Summers M D. 1979. Restriction Maps of Five Autographa californica MNPV Variants, Trichoplusia ni MNPVand Galleria mellonella MNPV DNAs with restriction endonucleases SmaI, KpnI, BamHI, SacI, XhoI, and EcoRI. J Virol, 30: 828-838.

    51. Stiles B, Himmerich S. 1998. Autographa californica NPV isolates: Restriction endonuclease analysis and comparative biological activity. J Invert Pathol, 72, 174-177.
        doi: 10.1006/jipa.1998.4758

    52. Theilmann D A, Blissard G W, Bonning B, et al. 2005. Family Baculoviridae. In: Virus Taxonomy, Eighth Report of the International Committee on Virus Taxonomy (Fauquet C M, Mayo M A, Maniloff J, et al. ed. ), San Diego: Elsevier Press, p177-185.

    53. van Oers M M, Vlak J M. 2007. Baculovirus Genomics. Current Drug Targets, 8: 1051-1068.
        doi: 10.2174/138945007782151333

    54. Vlak J M, Gröner A. 1980. Identification of two nuclear polyhedrosis viruses from the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae). J Invert Pathol, 35, 269-278.
        doi: 10.1016/0022-2011(80)90162-7

    55. Vickers J M, Cory J S, Entwistle P F. 1991. DNA characterization of eight geographic isolates of granulosis virus from the potato tuber moth (Phthorimaea operculella) (Lepidoptera, Gelechiidae). J Invert Pathol, 57, 334-342.
        doi: 10.1016/0022-2011(91)90137-F

    56. Wolff J L C, Vaicente F H, Martins R, et al. 2008. Analysis of the genome of Spodoptera frugiperda nucleopoly-hedrovirus (SfMNPV-19) and of the high genomic heterogeneity in Group Ⅱ nucleopolyhedroviruses. J Gen Virol, 89, 1202-1211.
        doi: 10.1099/vir.0.83581-0

    57. Yanase Y, Hashimoto Y, Kawarabata T. 2000. Identification of insertion and deletion genes in Autographa californica nucleopolyhedrovirus variants isolated from Galleria mellonella, Spodoptera exigua, Spodoptera litura and Xestia c-nigrum. Virus Genes, 21: 167-177.
        doi: 10.1023/A:1008183329145

    58. Zhang C X, Ma X C, Guo Z J. 2005. Comparison of the complete genome sequence between C1 and G4 isolates of the Helicoverpa armigera single nucleocapsid nucleopoly-hedrovirus.Virology, 333 (1):190-199.
        doi: 10.1016/j.virol.2004.12.028

  • 加载中

Figures(1) / Tables(1)

Article Metrics

Article views(4661) PDF downloads(18) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

      Corresponding author: Erlandson Martin A., martin.erlandson@agr.gc.ca
    • Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada

    Abstract: Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark “hot spots” of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.