Xueqin Zhu, Yang Liu, Jiao Guo, Junyuan Cao, Zonglin Wang, Gengfu Xiao and Wei Wang. Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response[J]. Virologica Sinica, 2021, 36(4): 774-783. doi: 10.1007/s12250-021-00358-y
Citation: Xueqin Zhu, Yang Liu, Jiao Guo, Junyuan Cao, Zonglin Wang, Gengfu Xiao, Wei Wang. Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response .VIROLOGICA SINICA, 2021, 36(4) : 774-783.  http://dx.doi.org/10.1007/s12250-021-00358-y

拉沙病毒包膜糖蛋白的N-糖基化修饰及其功能研究

  • 通讯作者: 王薇, wangwei@wh.iov.cn, ORCID: http://orcid.org/0000-0002-8696-9773
  • 收稿日期: 2020-11-02
    录用日期: 2021-01-13
    出版日期: 2021-03-10
  • 拉沙病毒属沙粒病毒科哺乳类沙粒病毒属,人类感染沙粒病毒会引起严重的出血热疾病。拉沙病毒包膜糖蛋白GPC高度糖基化,糖链覆盖GPC表面,参与GPC成熟、介导病毒入侵、遮蔽抗原/中和表位帮助病毒实现免疫逃逸。考察不同糖基化修饰突变策略(天冬酰胺突变为丙氨酸、天冬酰胺突变为谷酰胺、丝氨酸/苏氨酸突变为丙氨酸)对GPC切割的影响,发现在第二(N89)、第五(N119)和第八(N365)糖基化位点,采用任何一种突变策略均导致GPC切割功能丧失。进一步研究发现第二(N89)和第八(N365)糖基化位点突变降低拉沙假病毒感染力。在此基础上,我们进一步考察N-糖基化修饰对免疫反应的影响。结果发现缺失第一(N79Q)、第三(N99Q)、第五(N119Q)和第六(N167Q)糖链能显著提高免疫小鼠脾脏细胞中CD4+细胞比例;而缺失第一(N79Q)、第二(N89Q)、第三(N99Q)、第四(N109Q)、第五(N119Q)、第六(N167Q)和第九(N373Q)糖链提高CD8+效应性T细胞比例;某些特定糖链缺失增强Th1型免疫反应。同时发现,用缺失GPC上任一糖链的质粒免疫小鼠,得到的血清与糖链缺失的GPC的滴度都有所增高,而对野生型拉沙假病毒的中和能力没有显著变化。说明糖链在遮蔽GPC抗原表位和中和表位中发挥重要作用。以上研究为拉沙病毒疫苗研发和基于糖链的抗体设计提供借鉴。

Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response

  • Corresponding author: Wei Wang, wangwei@wh.iov.cn
  • ORCID: http://orcid.org/0000-0002-8696-9773
  • Received Date: 02 November 2020
    Accepted Date: 13 January 2021
    Published Date: 10 March 2021
  • Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. The glycoprotein complex (GPC) contains eleven N-linked glycans that play essential roles in GPC functionalities such as cleavage, transport, receptor recognition, epitope shielding, and immune response. We used three mutagenesis strategies (asparagine to glutamine, asparagine to alanine, and serine/tyrosine to alanine mutants) to abolish individual glycan chain on GPC and found that all the three strategies led to cleavage inefficiency on the 2nd (N89), 5th (N119), or 8th (N365) glycosylation motif. To evaluate N to Q mutagenesis for further research, it was found that deletion of the 2nd (N89Q) or 8th (N365Q) glycan completely inhibited the transduction efficiency of pseudotyped particles. We further investigated the role of individual glycan on GPC-mediated immune response by DNA immunization of mice. Deletion of the individual 1st (N79Q), 3rd (N99Q), 5th (N119Q), or 6th (N167Q) glycan significantly enhanced the proportion of effector CD4+ cells, whereas deletion of the 1st (N79Q), 2nd (N89Q), 3rd (N99Q), 4th (N109Q), 5th (N119Q), 6th (N167Q), or 9th (N373Q) glycan enhanced the proportion of CD8+ effector T cells. Deletion of specific glycan improves the Th1-type immune response, and abolishment of glycan on GPC generally increases the antibody titer to the glycan-deficient GPC. However, the antibodies from either the mutant or WT GPC-immunized mice show little neutralization effect on wild-type LASV. The glycan residues on GPC provide an immune shield for the virus, and thus represent a target for the design and development of a vaccine.

  • 加载中
    1. Abraham J, Corbett KD, Farzan M, Choe H, Harrison SC (2010) Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol 17: 438-444
        doi: 10.1038/nsmb.1772

    2. Baize S, Marianneau P, Loth P, Reynard S, Journeaux A, Chevallier M, Tordo N, Deubel V, Contamin H (2009) Early and strong immune responses are associated with control of viral replication and recovery in lassa virus-infected cynomolgus monkeys. J Virol 83: 5890-5903
        doi: 10.1128/JVI.01948-08

    3. Bonhomme CJ, Capul AA, Lauron EJ, Bederka LH, Knopp KA, Buchmeier MJ (2011) Glycosylation modulates arenavirus glycoprotein expression and function. Virology 409: 223-233
        doi: 10.1016/j.virol.2010.10.011

    4. Bonhomme CJ, Knopp KA, Bederka LH, Angelini MM, Buchmeier MJ (2013) LCMV glycosylation modulates viral fitness and cell tropism. PLoS ONE 8: e53273
        doi: 10.1371/journal.pone.0053273

    5. Botten J, Alexander J, Pasquetto V, Sidney J, Barrowman P, Ting J, Peters B, Southwood S, Stewart B, Rodriguez-Carreno MP, Mothe B, Whitton JL, Sette A, Buchmeier MJ (2006) Identification of protective Lassa virus epitopes that are restricted by HLA-A2. J Virol 80: 8351-8361
        doi: 10.1128/JVI.00896-06

    6. Bowden TA, Crispin M, Graham SC, Harvey DJ, Grimes JM, Jones EY, Stuart DI (2009) Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol 83: 8259-8265
        doi: 10.1128/JVI.00761-09

    7. Cohen-Dvashi H, Cohen N, Israeli H, Diskin R (2015) Molecular mechanism for LAMP1 recognition by Lassa virus. J Virol 89: 7584-7592
        doi: 10.1128/JVI.00651-15

    8. Eichler R, Lenz O, Garten W, Strecker T (2006) The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 3: 41
        doi: 10.1186/1743-422X-3-41

    9. Fisher-Hoch SP, Hutwagner L, Brown B, McCormick JB (2000) Effective vaccine for lassa fever. J Virol 74: 6777-6783
        doi: 10.1128/JVI.74.15.6777-6783.2000

    10. Geisbert TW, Jones S, Fritz EA, Shurtleff AC, Geisbert JB, Liebscher R, Grolla A, Stroher U, Fernando L, Daddario KM, Guttieri MC, Mothe BR, Larsen T, Hensley LE, Jahrling PB, Feldmann H (2005) Development of a new vaccine for the prevention of Lassa fever. PLoS Med 2: e183
        doi: 10.1371/journal.pmed.0020183

    11. Gunther S, Emmerich P, Laue T, Kuhle O, Asper M, Jung A, Grewing T, ter Meulen J, Schmitz H (2000) Imported lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis 6: 466-476
        doi: 10.3201/eid0605.000504

    12. Hastie KM, Zandonatti MA, Kleinfelter LM, Heinrich ML, Rowland MM, Chandran K, Branco LM, Robinson JE, Garry RF, Saphire EO (2017) Structural basis for antibody-mediated neutralization of Lassa virus. Science 356: 923-928
        doi: 10.1126/science.aam7260

    13. Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO (2019) Convergent structures illuminate features for Germline antibody binding and pan-Lassa virus neutralization. Cell 178: e1014

    14. Houlihan C, Behrens R (2017) Lassa fever. BMJ 358: j2986

    15. Ibukun FI (2020) Inter-lineage variation of Lassa virus glycoprotein epitopes: a challenge to Lassa virus vaccine development. Viruses 12: 386
        doi: 10.3390/v12040386

    16. Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ (1987) Clinical virology of Lassa fever in hospitalized patients. J Infect Dis 155: 456-464
        doi: 10.1093/infdis/155.3.456

    17. McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, Elliott LH, Belmont-Williams R (1986) Lassa fever. Effective therapy with ribavirin. N Engl J Med 314: 20-26

    18. Mire CE, Cross RW, Geisbert JB, Borisevich V, Agans KN, Deer DJ, Heinrich ML, Rowland MM, Goba A, Momoh M, Boisen ML, Grant DS, Fullah M, Khan SH, Fenton KA, Robinson JE, Branco LM, Garry RF, Geisbert TW (2017) Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat Med 23: 1146-1149
        doi: 10.1038/nm.4396

    19. Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, Kannadka CB, Smira AA, Garry CE, Bradley BT, Yu H, Shaffer JG, Boisen ML, Hartnett JN, Zandonatti MA, Rowland MM, Heinrich ML, Martinez-Sobrido L, Cheng B, de la Torre JC, Andersen KG, Goba A, Momoh M, Fullah M, Gbakie M, Kanneh L, Koroma VJ, Fonnie R, Jalloh SC, Kargbo B, Vandi MA, Gbetuwa M, Ikponmwosa O, Asogun DA, Okokhere PO, Follarin OA, Schieffelin JS, Pitts KR, Geisbert JB, Kulakoski PC, Wilson RB, Happi CT, Sabeti PC, Gevao SM, Khan SH, Grant DS, Geisbert TW, Saphire EO, Branco LM, Garry RF (2016) Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun 7: 11544
        doi: 10.1038/ncomms11544

    20. Sommerstein R, Flatz L, Remy MM, Malinge P, Magistrelli G, Fischer N, Sahin M, Bergthaler A, Igonet S, Ter Meulen J, Rigo D, Meda P, Rabah N, Coutard B, Bowden TA, Lambert PH, Siegrist CA, Pinschewer DD (2015) Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog 11: e1005276
        doi: 10.1371/journal.ppat.1005276

    21. ter Meulen J, Badusche M, Kuhnt K, Doetze A, Satoguina J, Marti T, Loeliger C, Koulemou K, Koivogui L, Schmitz H, Fleischer B, Hoerauf A (2000) Characterization of human CD4(+) T-cell clones recognizing conserved and variable epitopes of the Lassa virus nucleoprotein. J Virol 74: 2186-2192
        doi: 10.1128/JVI.74.5.2186-2192.2000

    22. ter Meulen J, Badusche M, Satoguina J, Strecker T, Lenz O, Loeliger C, Sakho M, Koulemou K, Koivogui L, Hoerauf A (2004) Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology 321: 134-143
        doi: 10.1016/j.virol.2003.12.013

    23. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The immune epitope database (IEDB): 2018 update. Nucl Acids Res 47: D339-D343
        doi: 10.1093/nar/gky1006

    24. Wang P, Liu Y, Zhang G, Wang S, Guo J, Cao J, Jia X, Zhang L, Xiao G, Wang W (2018) Screening and identification of Lassa virus entry inhibitors from an FDA-approved drugs library. J Virol 92: e00954-e1918

    25. Warner BM, Safronetz D, Stein DR (2018) Current research for a vaccine against Lassa hemorrhagic fever virus. Drug Des Devel Ther 12: 2519-2527
        doi: 10.2147/DDDT.S147276

    26. Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M (2018) Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci USA 115: 7320-7325
        doi: 10.1073/pnas.1803990115

  • 加载中
  • 10.1007s12250-021-00358-y-ESM.pdf

Figures(6)

Article Metrics

Article views(5007) PDF downloads(22) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Effects of N-Linked Glycan on Lassa Virus Envelope Glycoprotein Cleavage, Infectivity, and Immune Response

      Corresponding author: Wei Wang, wangwei@wh.iov.cn
    • 1. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
    • 2. University of the Chinese Academy of Sciences, Beijing 100049, China

    Abstract: Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. The glycoprotein complex (GPC) contains eleven N-linked glycans that play essential roles in GPC functionalities such as cleavage, transport, receptor recognition, epitope shielding, and immune response. We used three mutagenesis strategies (asparagine to glutamine, asparagine to alanine, and serine/tyrosine to alanine mutants) to abolish individual glycan chain on GPC and found that all the three strategies led to cleavage inefficiency on the 2nd (N89), 5th (N119), or 8th (N365) glycosylation motif. To evaluate N to Q mutagenesis for further research, it was found that deletion of the 2nd (N89Q) or 8th (N365Q) glycan completely inhibited the transduction efficiency of pseudotyped particles. We further investigated the role of individual glycan on GPC-mediated immune response by DNA immunization of mice. Deletion of the individual 1st (N79Q), 3rd (N99Q), 5th (N119Q), or 6th (N167Q) glycan significantly enhanced the proportion of effector CD4+ cells, whereas deletion of the 1st (N79Q), 2nd (N89Q), 3rd (N99Q), 4th (N109Q), 5th (N119Q), 6th (N167Q), or 9th (N373Q) glycan enhanced the proportion of CD8+ effector T cells. Deletion of specific glycan improves the Th1-type immune response, and abolishment of glycan on GPC generally increases the antibody titer to the glycan-deficient GPC. However, the antibodies from either the mutant or WT GPC-immunized mice show little neutralization effect on wild-type LASV. The glycan residues on GPC provide an immune shield for the virus, and thus represent a target for the design and development of a vaccine.