Dan Li, Jing-Long Ye and Zhong-Yu Liu. Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D[J]. Virologica Sinica, 2021, 36(6): 1456-1464. doi: 10.1007/s12250-021-00428-1
Citation: Dan Li, Jing-Long Ye, Zhong-Yu Liu. Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D .VIROLOGICA SINICA, 2021, 36(6) : 1456-1464.  http://dx.doi.org/10.1007/s12250-021-00428-1

基于黄热病毒疫苗株17D的萤光素酶报告病毒的构建及应用

  • 通讯作者: 刘忠钰, Liuzhy79@mail.sysu.edu.cn, ORCID: 0000-0001-7385-5681
  • 收稿日期: 2021-05-13
    录用日期: 2021-06-08
    出版日期: 2021-08-03
  • 黄热病毒(YFV)是一种再发病毒,人类感染后可导致高致死率的黄热病。尽管已有高效疫苗,但目前对YFV的复制机制知之甚少,且仍缺乏临床可用的特效药物。本研究通过反向遗传学手段,将海肾萤光素酶报告基因(Rluc)引入YFV疫苗株17D中,从而获得重组病毒17D-Rluc.2A。该报告病毒具有与亲本株相似的蚀斑形态和体外增殖特征,在感染17D-Rluc.2A的哺乳动物细胞和蚊虫细胞中均可检测到报告基因的高效表达,而且细胞内荧光素酶的表达与细胞外病毒粒子的载量间有良好的线性关系。在此基础上,我们将基于17D-Rluc.2A报告病毒的突变分析与选择性2'-羟基酰化引物延伸(SHAPE)技术相结合,确认了保守的5'-SLA元件在YFV复制过程中的关键作用。因此,17D-Rluc.2A在YFV复制研究中具有重要价值。最后,我们证实两种具有不同抗病毒机制的化合物可以有效抑制17D-Rluc.2A在不同细胞系中的增殖,表明该报告病毒可用于抗病毒药物的评价。综上,17D-Rluc.2A将为YFV复制研究及药物研发奠定有力的技术基础。

Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D

  • Corresponding author: Zhong-Yu Liu, Liuzhy79@mail.sysu.edu.cn
  • ORCID: 0000-0001-7385-5681
  • Received Date: 13 May 2021
    Accepted Date: 08 June 2021
    Published Date: 03 August 2021
  • Yellow fever virus (YFV) is a re-emerging virus that can cause life-threatening yellow fever disease in humans. Despite the availability of an effective vaccine, little is known about the replication mechanism of YFV, and there are still no available specific anti-YFV medicines. Herein, by introducing the Renilla luciferase gene (Rluc) into an infectious clone of YFV vaccine strain 17D, we generated a recombinant virus 17D-Rluc.2A via reverse genetics approaches. The 17D-Rluc.2A had similar plaque morphology and comparable in vitro growth characteristics with its parental strain. Importantly, the reporter luciferase was efficiently expressed in 17D-Rluc.2A-infected mammalian and mosquito cells, and there was a good linear correlation between intracellular luciferase expression and extracellular infectious virion reproduction. Furthermore, by a combination of the 17D-Rluc.2A reporter virus and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) technology, the conserved 5′-SLA element was shown to be essential for YFV replication, highlighting the capability of 17D-Rluc.2A in the investigation of YFV replication. At last, we demonstrated that two compounds with distinct anti-viral mechanisms can effectively inhibit the viral propagation in 17D-Rluc.2A-infected cells, demonstrating its potential application in the evaluation of anti-viral medicines. Taken together, the 17D-Rluc.2A serves as a useful tool for the study of YFV replication and anti-YFV medicine development.


  • 加载中
    1. Baker C, Shi PY (2020) Construction of stable reporter flaviviruses and their applications. Viruses-Basel 12: 1082
        doi: 10.3390/v12101082

    2. Baker C, Liu Y, Zou J, Muruato A, Xie X, Shi PY (2020a) Identifying optimal capsid duplication length for the stability of reporter flaviviruses. Emerg Microbes Infect 9: 2256-2265
        doi: 10.1080/22221751.2020.1829994

    3. Baker C, Xie X, Zou J, Muruato A, Fink K, Shi PY (2020b) Using recombination-dependent lethal mutations to stabilize reporter flaviviruses for rapid serodiagnosis and drug discovery. EBioMedicine 57: 102838
        doi: 10.1016/j.ebiom.2020.102838

    4. Barrett ADT (2017) Yellow fever live attenuated vaccine: a very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine 35: 5951-5955
        doi: 10.1016/j.vaccine.2017.03.032

    5. Bredenbeek PJ, Kooi EA, Lindenbach B, Huijkman N, Rice CM, Spaan WJM (2003) A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84: 1261-1268
        doi: 10.1099/vir.0.18860-0

    6. Chapman EG, Moon SL, Wilusz J, Kieft JS (2014) RNA structures that resist degradation by Xrn1 produce a pathogenic Dengue virus RNA. Elife 3: e01892
        doi: 10.7554/eLife.01892

    7. Cui S, Pan Y, Lyu Y, Liang Z, Li J, Sun Y, Dou X, Tian L, Huo D, Chen L, Li X, Wang Q (2017) Detection of yellow fever virus genomes from four imported cases in China. Int J Infect Dis 60: 93-95
        doi: 10.1016/j.ijid.2017.05.001

    8. Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25: 1974-1975
        doi: 10.1093/bioinformatics/btp250

    9. de Borba L, Villordo SM, Iglesias NG, Filomatori CV, Gebhard LG, Gamarnik AV (2015) Overlapping local and long-range RNA-RNA interactions modulate dengue virus genome cyclization and replication. J Virol 89: 3430-3437
        doi: 10.1128/JVI.02677-14

    10. Deng YQ, Zhang NN, Li CF, Tian M, Hao JN, Xie XP, Shi PY, Qin CF (2016) Adenosine analog NITD008 is a potent inhibitor of Zika virus. Open Forum Infect Dis 3: ofw175
        doi: 10.1093/ofid/ofw175

    11. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5' RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20: 2238-2249
        doi: 10.1101/gad.1444206

    12. Garske T, Van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, Perea W, Ferguson NM, Yellow fever expert committee (2014) Yellow fever in africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med 11: e1001638
        doi: 10.1371/journal.pmed.1001638

    13. Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Viruses 3: 1739-1756
        doi: 10.3390/v3091739

    14. Göertz GP, Abbo SR, Fros JJ, Pijlman GP (2017) Functional RNA during Zika virus infection. Virus Res 254: 41-53

    15. Goldani LZ (2017) Yellow fever outbreak in Brazil, 2017. Braz J Infect Dis 21: 123-124
        doi: 10.1016/j.bjid.2017.02.004

    16. Hackett BA, Cherry S (2018) Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci U S A 115: 4246-4251
        doi: 10.1073/pnas.1720032115

    17. Karabiber F, McGinnis JL, Favorov OV, Weeks KM (2013) QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis. RNA 19: 63-73
        doi: 10.1261/rna.036327.112

    18. Kassar TC, Magalhães T, S JUNIOR JV, Carvalho AG, Silva AND, Queiroz SR, Bertani GR, Gil LH (2017) Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase. An Acad Bras Cienc 89: 2119-2130
        doi: 10.1590/0001-3765201720160196

    19. Liu ZY, Qin CF (2020) Structure and function of cis-acting RNA elements of flavivirus. Rev Med Virol 30: e2092

    20. Liu ZY, Li XF, Jiang T, Deng YQ, Zhao H, Wang HJ, Ye Q, Zhu SY, Qiu Y, Zhou X, Qin ED, Qin CF (2013) Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J Virol 87: 6804-6818
        doi: 10.1128/JVI.00243-13

    21. Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF (2016) Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. Elife 5: e17636
        doi: 10.7554/eLife.17636

    22. Liu ZY, Yu JY, Huang XY, Fan H, Li XF, Deng YQ, Ji X, Cheng ML, Ye Q, Zhao H, Han JF, An XP, Jiang T, Zhang B, Tong YG, Qin CF (2017) Characterization of cis-acting RNA elements of Zika virus by using a self-splicing ribozyme-dependent infectious clone. J Virol 91: e00484-e517
        doi: 10.1128/JVI.00484-17

    23. Lo MK, Shi PY, Chen YL, Flint M, Spiropoulou CF (2016) In vitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Res 130: 46-49
        doi: 10.1016/j.antiviral.2016.03.013

    24. Lodeiro MF, Filomatori CV, Gamarnik AV (2009) Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83: 993-1008
        doi: 10.1128/JVI.01647-08

    25. Norrby E (2007) Yellow fever and max theiler: the only nobel prize for a virus vaccine. J Exp Med 204: 2779-2784
        doi: 10.1084/jem.20072290

    26. Rausch K, Hackett BA, Weinbren NL, Reeder SM, Sadovsky Y, Hunter CA, Schultz DC, Coyne CB, Cherry S (2017) Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep 18: 804-815
        doi: 10.1016/j.celrep.2016.12.068

    27. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129
        doi: 10.1186/1471-2105-11-129

    28. Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, Setthapramote C, Bredenbeek PJ, Bozzacco L, MacDonald MR, Clark JJ, Rice CM, Patel AH, Kohl A, Varjak M (2020) Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res 183: 104939
        doi: 10.1016/j.antiviral.2020.104939

    29. Silva PA, Pereira CF, Dalebout TJ, Spaan WJ, Bredenbeek PJ (2010) An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol 84: 11395-11406
        doi: 10.1128/JVI.01047-10

    30. Syzdykova LR, Binke S, Keyer VV, Shevtsov AB, Zaripov MM, Zhylkibayev AA, Ramanculov EM, Shustov AV (2021) Fluorescent tagging the NS1 protein in yellow fever virus: Replication-capable viruses which produce the secretory GFP-NS1 fusion protein. Virus Res 294: 198291
        doi: 10.1016/j.virusres.2020.198291

    31. Villordo SM, Filomatori CV, Sánchez-Vargas I, Blair CD, Gamarnik AV (2015) Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog 11: e1004604
        doi: 10.1371/journal.ppat.1004604

    32. WHO (2019) Yellow fever. https://www.whoint/en/newsroom/factsheets/detail/yellowfever

    33. Xie X, Zou J, Zhang X, Zhou Y, Routh AL, Kang C, Popov VL, Chen X, Wang QY, Dong H, Shi PY (2019) Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe 26(606-622): e608
        doi: 10.1016/j.chom.2019.09.015

    34. Yin Z, Chen YL, Schul W, Wang QY, Gu F, Duraiswamy J, Kondreddi RR, Niyomrattanakit P, Lakshminarayana SB, Goh A, Xu HY, Liu W, Liu B, Lim JYH, Ng CY, Qing M, Lim CC, Yip A, Wang G, Chan WL, Tan HP, Lin K, Zhang B, Zou G, Bernard KA, Garrett C, Beltz K, Dong M, Weaver M, He H, Pichota A, Dartois V, Keller TH, Shi PY (2009) An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci U S A 106: 20435-20439
        doi: 10.1073/pnas.0907010106

    35. Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL, Yu JY, Ji X, Xu YP, Li G, Li C, Wang HJ, Deng YQ, Wu M, Cheng ML, Ye Q, Xie DY, Li XF, Wang X, Shi W, Hu B, Shi PY, Xu Z, Qin CF (2017) A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 358: 933-936
        doi: 10.1126/science.aam7120

    36. Zhang PT, Shan C, Li XD, Liu SQ, Deng CL, Ye HQ, Shang BD, Shi PY, Lv M, Shen BF, Qin CF, Zhang B (2016) Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Res 211: 17-24
        doi: 10.1016/j.virusres.2015.09.015

    37. Zhang Q, Li N, Deng C, Zhang Z, Li X, Yoshii K, Ye H, Zhang B (2019) Trans Complementation of Replication-defective Omsk Hemorrhagic Fever Virus for Antiviral Study. Virol Sin 34: 412-422
        doi: 10.1007/s12250-019-00109-0

    38. Zhao S, Stone L, Gao D, He D (2018) Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Negl Trop Dis 12: e0006158
        doi: 10.1371/journal.pntd.0006158

    39. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406-3415
        doi: 10.1093/nar/gkg595

  • 加载中
  • 10.1007s12250-021-00428-1-ESM.pdf

Figures(4)

Article Metrics

Article views(3408) PDF downloads(14) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D

      Corresponding author: Zhong-Yu Liu, Liuzhy79@mail.sysu.edu.cn
    • The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou 510006, China

    Abstract: 

    Yellow fever virus (YFV) is a re-emerging virus that can cause life-threatening yellow fever disease in humans. Despite the availability of an effective vaccine, little is known about the replication mechanism of YFV, and there are still no available specific anti-YFV medicines. Herein, by introducing the Renilla luciferase gene (Rluc) into an infectious clone of YFV vaccine strain 17D, we generated a recombinant virus 17D-Rluc.2A via reverse genetics approaches. The 17D-Rluc.2A had similar plaque morphology and comparable in vitro growth characteristics with its parental strain. Importantly, the reporter luciferase was efficiently expressed in 17D-Rluc.2A-infected mammalian and mosquito cells, and there was a good linear correlation between intracellular luciferase expression and extracellular infectious virion reproduction. Furthermore, by a combination of the 17D-Rluc.2A reporter virus and selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) technology, the conserved 5′-SLA element was shown to be essential for YFV replication, highlighting the capability of 17D-Rluc.2A in the investigation of YFV replication. At last, we demonstrated that two compounds with distinct anti-viral mechanisms can effectively inhibit the viral propagation in 17D-Rluc.2A-infected cells, demonstrating its potential application in the evaluation of anti-viral medicines. Taken together, the 17D-Rluc.2A serves as a useful tool for the study of YFV replication and anti-YFV medicine development.