Citation: Jing Li, Lingyao Zhang, Wenjing Zou, Zhaohui Yang, Jianbo Zhan, Jing Cheng. Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017–2019 .VIROLOGICA SINICA, 2023, 38(3) : 351-362.  http://dx.doi.org/10.1016/j.virs.2023.04.002

Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017–2019

  • Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7–12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 = 8.108, P = 0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.

  • 加载中
  • 10.1016j.virs.2023.04.002-ESM.docx
    1. Ai, J., Zhang, M., Jin, F., Xie, Z., 2021. Recombinant GII.4[P31] Was Predominant Norovirus Circulating in Beijing Area, China, 2018-2020. Virol. Sin. 36, 1245-1247.

    2. Ao, Y., Cong, X., Jin, M., Sun, X., Wei, X., Wang, J., Zhang, Q., Song, J., Yu, J., Cui, J., Qi, J., Tan, M., Duan, Z., 2018. Genetic Analysis of Reemerging GII.P16-GII.2 Noroviruses in 2016-2017 in China. J. Infect. Dis. 218, 133-143.

    3. Ao, Y., Wang, J., Ling, H., He, Y., Dong, X., Wang, X., Peng, J., Zhang, H., Jin, M., Duan, Z., 2017. Norovirus GII.P16/GII.2-Associated Gastroenteritis, China, 2016. Emerg. Infect. Dis. 23, 1172-1175.

    4. Barreira, D., Fumian, T.M., Tonini, M., Volpini, L., Santos, R.P., Ribeiro, A., Leite, J., Souza, M., Brasil, P., Da, C.D., Miagostovich, M.P., Spano, L.C., 2017. Detection and molecular characterization of the novel recombinant norovirus GII.P16-GII.4 Sydney in southeastern Brazil in 2016. PLoS One 12, e0189504.

    5. Bidalot, M., Théry, L., Kaplon, J., De Rougemont, A., Ambert-Balay, K., 2017. Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII.2, France, winter 2016 to 2017. Euro. Surveill. 22, 30508.

    6. Bok, K., Abente, E.J., Realpe-Quintero, M., Mitra, T., Sosnovtsev, S.V., Kapikian, A.Z., Green, K.Y., 2009. Evolutionary dynamics of GII.4 noroviruses over a 34-year period. J. Virol. 83, 11890-11901.

    7. Bull, R.A., Hansman, G.S., Clancy, L.E., Tanaka, M.M., Rawlinson, W.D., White, P.A., 2005. Norovirus recombination in ORF1/ORF2 overlap. Emerg. Infect. Dis. 11, 1079-1085.

    8. Cannon, J.L., Barclay, L., Collins, N.R., Wikswo, M.E., Castro, C.J., Magaña, L.C., Gregoricus, N., Marine, R.L., Chhabra, P., Vinjé, J., 2017. Genetic and Epidemiologic Trends of Norovirus Outbreaks in the United States from 2013 to 2016 Demonstrated Emergence of Novel GII.4 Recombinant Viruses. J. Clin. Microbiol. 55, 2208-2221.

    9. Cao, S., Lou, Z., Tan, M., Chen, Y., Liu, Y., Zhang, Z., Zhang, X.C., Jiang, X., Li, X., Rao, Z., 2007. Structural basis for the recognition of blood group trisaccharides by norovirus. J. Virol. 81, 5949-5957.

    10. Chan, M.C.W., Lee, N., Hung, T., Kwok, K., Cheung, K., Tin, E.K.Y., Lai, R.W.M., Nelson, E.A.S., Leung, T.F., Chan, P.K.S., 2015. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nature Communications 6, 10061.

    11. Chen, H., Qian, F., Xu, J., Chan, M., Shen, Z., Zai, S., Shan, M., Cai, J., Zhang, W., He, J., Liu, Y., Zhang, J., Yuan, Z., Zhu, Z., Hu, Y., 2015. A novel norovirus GII.17 lineage contributed to adult gastroenteritis in Shanghai, China, during the winter of 2014-2015. Emerging Microbes & Infections 4, 1-7.

    12. Chen, R., Neill, J.D., Estes, M.K., Prasad, B.V., 2006. X-ray structure of a native calicivirus:structural insights into antigenic diversity and host specificity. Proc. Natl. Acad. Sci. USA 103, 8048-8053.

    13. Chhabra, P., de Graaf, M., Parra, G.I., Chan, M.C., Green, K., Martella, V., Wang, Q., White, P.A., Katayama, K., Vennema, H., Koopmans, M., Vinjé, J., 2019. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 100, 1393-1406.

    14. Choi, Y.S., Koo, E.S., Kim, M.S., Choi, J.D., Shin, Y., Jeong, Y.S., 2017. Re-emergence of a GII.4 Norovirus Sydney 2012 Variant Equipped with GII.P16 RdRp and Its Predominance over Novel Variants of GII.17 in South Korea in 2016. Food Environ. Virol. 9, 168-178.

    15. Collaborators, G.C.O.D., 2018. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017:a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1736-1788.

    16. Collaborators, G.D.D., 2017. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases:a systematic analysis for the Global Burden of Disease Study 2015. Lancet Infect. Dis. 17, 909-948.

    17. de Graaf, M., van Beek, J., Vennema, H., Podkolzin, A.T., Hewitt, J., Bucardo, F., Templeton, K., Mans, J., Nordgren, J., Reuter, G., Lynch, M., Rasmussen, L.D., Iritani, N., Chan, M.C., Martella, V., Ambert-Balay, K., Vinjé, J., White, P.A., Koopmans, M.P., 2015. Emergence of a novel GII.17 norovirus-End of the GII.4 era? Euro. Surveill. 20, 21178.

    18. Degiuseppe, J.I., Gomes, K.A., Hadad, M.F., Parra, G.I., Stupka, J.A., 2017. Detection of novel GII.17 norovirus in Argentina, 2015. Infect. Genet. Evol. 47, 121-124.

    19. Dinu, S., Nagy, M., Negru, D.G., Popovici, E.D., Zota, L., Oprișan, G., 2016. Molecular identification of emergent GII.P17-GII.17 norovirus genotype, Romania, 2015. Euro. Surveill. 21, 30141.

    20. Gao, Z., Liu, B., Huo, D., Yan, H., Jia, L., Du Y, Qian, H., Yang, Y., Wang, X., Li, J., Wang, Q., 2015. Increased norovirus activity was associated with a novel norovirus GII.17 variant in Beijing, China during winter 2014-2015. BMC Infect. Dis. 15, 574.

    21. Giammanco, G.M., De Grazia, S., Bonura, F., Cappa, V., Muli, S.L., Pepe, A., Medici, M.C., Tummolo, F., Calderaro, A., Di Bernardo, F., Dones, P., Morea, A., Loconsole, D., Catella, C., Terio, V., Bànyai, K., Chironna, M., Martella, V., 2017. Norovirus GII.17 as Major Epidemic Strain in Italy, Winter 2015-16. Emerg. Infect. Dis. 23, 1206-1208.

    22. Kobayashi, M., Matsushima, Y., Motoya, T., Sakon, N., Shigemoto, N., Okamoto-Nakagawa, R., Nishimura, K., Yamashita, Y., Kuroda, M., Saruki, N., Ryo, A., Saraya, T., Morita, Y., Shirabe, K., Ishikawa, M., Takahashi, T., Shinomiya, H., Okabe, N., Nagasawa, K., Suzuki, Y., Katayama, K., Kimura, H., 2016. Molecular evolution of the capsid gene in human norovirus genogroup II. Sci. Rep. 6, 29400.

    23. Kolawole, A.O., Smith, H.Q., Svoboda, S.A., Lewis, M.S., Sherman, M.B., Lynch, G.C., Pettitt, B.M., Smith, T.J., Wobus, C.E., 2017. Norovirus Escape from Broadly Neutralizing Antibodies Is Limited to Allostery-Like Mechanisms. mSphere 2, e00334-17.

    24. Koo, E.S., Kim, M.S., Choi, Y.S., Park, K.S., Jeong, Y.S., 2017. Occurrence of novel GII.17 and GII.21 norovirus variants in the coastal environment of South Korea in 2015. PLoS One 12, e0172237.

    25. Li, J., Zhang, T., Xu J., Zhan J., Guan X., Xing X., Ma J., Qiu D., Huang J., Guo P., Song Y., 2017. Epidemic characteristics and genotypes of norovirus in Hubei Province, 2015. Chinese Journal of Disease Control and Prevention. 21, 349-352, 361.

    26. Li, J., Zhang, T., Cai, K., Jiang, Y., Guan, X., Zhan, J., Zou, W., Yang, Z., Xing, X., Wu, Y., Song, Y., Yu, X., Xu, J., 2018. Temporal evolutionary analysis of re-emerging recombinant GII.P16_GII.2 norovirus with acute gastroenteritis in patients from Hubei Province of China, 2017. Virus Res. 249, 99-109.

    27. Lindesmith, L.C., Beltramello, M., Donaldson, E.F., Corti, D., Swanstrom, J., Debbink, K., Lanzavecchia, A., Baric, R.S., 2012. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog. 8, e1002705.

    28. Lindesmith, L.C., Brewer-Jensen, P.D., Mallory, M.L., Debbink, K., Swann, E.W., Vinjé, J., Baric, R.S., 2018. Antigenic Characterization of a Novel Recombinant GII.P16-GII.4 Sydney Norovirus Strain With Minor Sequence Variation Leading to Antibody Escape. J. Infect. Dis. 217, 1145-1152.

    29. Lindesmith, L.C., Costantini, V., Swanstrom, J., Debbink, K., Donaldson, E.F., Vinjé, J., Baric, R.S., 2013. Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J. Virol. 87, 2803-2813.

    30. Lindesmith, L.C., Debbink, K., Swanstrom, J., Vinjé, J., Costantini, V., Baric, R.S., Donaldson, E.F., 2012. Monoclonal antibody-based antigenic mapping of norovirus GII.4-2002. J. Virol. 86, 873-883.

    31. Lindesmith, L.C., Donaldson, E.F., Beltramello, M., Pintus, S., Corti, D., Swanstrom, J., Debbink, K., Jones, T.A., Lanzavecchia, A., Baric, R.S., 2014. Particle Conformation Regulates Antibody Access to a Conserved GII.4 Norovirus Blockade Epitope. Journal of Virology 88, 8826-8842.

    32. Lindesmith, L.C., Mallory, M.L., Debbink, K., Donaldson, E.F., Brewer-Jensen, P.D., Swann, E.W., Sheahan, T.P., Graham, R.L., Beltramello, M., Corti, D., Lanzavecchia, A., Baric, R.S., 2018. Conformational Occlusion of Blockade Antibody Epitopes, a Novel Mechanism of GII.4 Human Norovirus Immune Evasion. mSphere 3, e00518-17.

    33. Lochridge, V.P., Jutila, K.L., Graff, J.W., Hardy, M.E., 2005. Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. J. Gen. Virol. 86, 2799-2806.

    34. Lu, J., Fang, L., Zheng, H., Lao, J., Yang, F., Sun, L., Xiao, J., Lin, J., Song, T., Ni, T., Raghwani, J., Ke, C., Faria, N.R., Bowden, T.A., Pybus, O.G., Li, H., 2016. The Evolution and Transmission of Epidemic GII.17 Noroviruses. J. Infect. Dis. 214, 556-64.

    35. Lu, J., Sun, L., Fang, L., Yang, F., Mo, Y., Lao, J., Zheng, H., Tan, X., Lin, H., Rutherford, S., Guo, L., Ke, C., Hui, L., 2015. Gastroenteritis Outbreaks Caused by Norovirus GII.17, Guangdong Province, China, 2014-2015. Emerg. Infect. Dis. 21, 1240-1242.

    36. Lu, L., Zhong, H., Xu, M., Su, L., Cao, L., Jia, R., Xu, J., 2019. Genetic diversity and epidemiology of Genogroup II noroviruses in children with acute sporadic gastroenteritis in Shanghai, China, 2012-2017. BMC Infect. Dis. 19, 736.

    37. Lu, Y., Ma, M., Wang, H., Wang, D., Chen, C., Jing, Q., Geng, J., Li, T., Zhang, Z., Yang, Z., 2020. An outbreak of norovirus-related acute gastroenteritis associated with delivery food in Guangzhou, southern China. BMC Public Health 20, 25.

    38. Lun, J.H., Hewitt, J., Yan, G., Enosi, T.D., Rawlinson, W.D., White, P.A., 2018. Recombinant GII.P16/GII.4 Sydney 2012 Was the Dominant Norovirus Identified in Australia and New Zealand in 2017. Viruses 10, 548.

    39. Mallory, M.L., Lindesmith, L.C., Graham, R.L., Baric, R.S., 2019. GII.4 Human Norovirus:Surveying the Antigenic Landscape. Viruses 11, 177.

    40. Mans, J., 2019. Norovirus Infections and Disease in Lower-MiddleandLow-Income Countries, 1997-2018. Viruses 11, 341.

    41. Matsushima, Y., Ishikawa, M., Shimizu, T., Komane, A., Kasuo, S., Shinohara, M., Nagasawa, K., Kimura, H., Ryo, A., Okabe, N., Haga, K., Doan, Y.H., Katayama, K., Shimizu, H., 2015. Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. Euro. Surveill. 20, 21173.

    42. Matsushima, Y., Mizukoshi, F., Sakon, N., Doan, Y.H., Ueki, Y., Ogawa, Y., Motoya, T., Tsukagoshi, H., Nakamura, N., Shigemoto, N., Yoshitomi, H., Okamoto-Nakagawa, R., Suzuki, R., Tsutsui, R., Terasoma, F., Takahashi, T., Sadamasu, K., Shimizu, H., Okabe, N., Nagasawa, K., Aso, J., Ishii, H., Kuroda, M., Ryo, A., Katayama, K., Kimura, H., 2019. Evolutionary Analysis of the VP1 and RNA-Dependent RNA Polymerase Regions of Human Norovirus GII.P17-GII.17 in 2013-2017. Front Microbiol. 10, 2189.

    43. Matsushima, Y., Shimizu, T., Ishikawa, M., Komane, A., Okabe, N., Ryo, A., Kimura, H., Katayama, K., Shimizu, H., 2016. Complete Genome Sequence of a Recombinant GII.P16-GII.4 Norovirus Detected in Kawasaki City, Japan, in 2016. Genome Announc. 4, e01099-16.

    44. Medici, M.C., Tummolo, F., Martella, V., De Conto, F., Arcangeletti, M.C., Pinardi, F., Ferraglia, F., Chezzi, C., Calderaro, A., 2018. Emergence of novel recombinant GII.P16_GII.2 and GII. P16_GII.4 Sydney 2012 norovirus strains in Italy, winter 2016/2017. New Microbiol. 41, 71-72.

    45. Nagasawa, K., Matsushima, Y., Motoya, T., Mizukoshi, F., Ueki, Y., Sakon, N., Murakami, K., Shimizu, T., Okabe, N., Nagata, N., Shirabe, K., Shinomiya, H., Suzuki, W., Kuroda, M., Sekizuka, T., Ryo, A., Fujita, K., Oishi, K., Katayama, K., Kimura, H., 2018. Phylogeny and Immunoreactivity of Norovirus GII.P16-GII.2, Japan, Winter 2016-17. Emerg. Infect. Dis. 24, 144-148.

    46. Niendorf, S., Jacobsen, S., Faber, M., Eis-Hübinger, A.M., Hofmann, J., Zimmermann, O., Höhne, M., Bock, C.T., 2017. Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016. Euro. Surveill. 22, 30447.

    47. Parra, G.I., 2019. Emergence of norovirus strains:A tale of two genes. Virus Evol. 5, vez048.

    48. Sai, L., Sun, J., Shao, L., Chen, S., Liu, H., Ma, L., 2013. Epidemiology and clinical features of rotavirus and norovirus infection among children in Ji'nan, China. Virol. J. 10, 302.

    49. Shanker, S., Choi, J.M., Sankaran, B., Atmar, R.L., Estes, M.K., Prasad, B.V., 2011. Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant:implications for epochal evolution. J. Virol. 85, 8635-8645.

    50. Siebenga, J.J., Vennema, H., Renckens, B., de Bruin, E., van der Veer, B., Siezen, R.J., Koopmans, M., 2007. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J. Virol. 81, 9932-9941.

    51. Siebenga, J.J., Vennema, H., Zheng, D.P., Vinjé, J., Lee, B.E., Pang, X.L., Ho, E.C., Lim, W., Choudekar, A., Broor, S., Halperin, T., Rasool, N.B., Hewitt, J., Greening, G.E., Jin, M., Duan, Z.J., Lucero, Y., O'Ryan, M., Hoehne, M., Schreier, E., Ratcliff, R.M., White, P.A., Iritani, N., Reuter, G., Koopmans, M., 2009. Norovirus illness is a global problem:emergence and spread of norovirus GII.4 variants, 2001-2007. J. Infect. Dis. 200, 802-812.

    52. Tohma, K., Ford-Siltz, L.A., Kendra, J.A., Parra, G.I., 2022. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep. 39, 110689.

    53. Tohma, K., Lepore, C.J., Ford-Siltz, L.A., Parra, G.I., 2018. Evolutionary dynamics of non-GII genotype 4 (GII.4) noroviruses reveal limited and independent diversification of variants. J. Gen. Virol. 99, 1027-1035.

    54. Tohma, K., Lepore, C.J., Gao, Y., Ford-Siltz, L.A., Parra, G.I., 2019. Population Genomics of GII.4 Noroviruses Reveal Complex Diversification and New Antigenic Sites Involved in the Emergence of Pandemic Strains. mBio 10, e02202-19.

    55. van Beek, J., Ambert-Balay, K., Botteldoorn, N., Eden, J.S., Fonager, J., Hewitt, J., Iritani, N., Kroneman, A., Vennema, H., Vinjé, J., White, P.A., Koopmans, M., 2013. Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Euro. Surveill. 18, 8-9.

    56. van Beek, J., de Graaf, M., Al-Hello, H., Allen, D.J., Ambert-Balay, K., Botteldoorn, N., Brytting, M., Buesa, J., Cabrerizo, M., Chan, M., Cloak, F., Di Bartolo, I., Guix, S., Hewitt, J., Iritani, N., Jin, M., Johne, R., Lederer, I., Mans, J., Martella, V., Maunula, L., McAllister, G., Niendorf, S., Niesters, H.G., Podkolzin, A.T., Poljsak-Prijatelj, M., Rasmussen, L.D., Reuter, G., Tuite, G., Kroneman, A., Vennema, H., Koopmans, M.P.G., 2018. Molecular surveillance of norovirus, 2005-16:an epidemiological analysis of data collected from the NoroNet network. The Lancet Infectious Diseases 18, 545-553.

    57. Vega, E., Barclay, L., Gregoricus, N., Williams, K., Lee, D., Vinjé, J., 2011. Novel surveillance network for norovirus gastroenteritis outbreaks, United States. Emerg. Infect. Dis. 17, 1389-1395.

    58. Vinjé, J., 2015. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 53, 373-381.

    59. Wang, Q.H., Han, M.G., Cheetham, S., Souza, M., Funk, J.A., Saif, L.J., 2005. Porcine noroviruses related to human noroviruses. Emerg. Infect. Dis. 11, 1874-1881.

    60. Wu, C., Liu, S., Zhang, S., Yang, Z., 2020. Molcontroller:A VMD Graphical User Interface Featuring Molecule Manipulation. J. Chem. Inf. Model 60, 5126-5131.

    61. Xi, J.N., Graham, D.Y., Wang, K.N., Estes, M.K., 1990. Norwalk virus genome cloning and characterization. Science 250, 1580-1583.

    62. Xue, L., Wu, Q., Cai, W., Zhang, J., Guo, W., 2016. Molecular characterization of new emerging GII.17 norovirus strains from South China. Infect. Genet. Evol. 40, 1-7.

    63. Zheng, G.L., Zhu, Z.X., Cui, J.L., Yu, J.M., 2022. Evolutionary analyses of emerging GII.2[P16] and GII.4 Sydney[P16] noroviruses. Virus Evol. 8, veac030.

    64. Zou, W., Cui, D., Wang, X., Guo, H., Yao, X., Jin, M., Huang, Q., Gao, M., Wen, X., 2015. Clinical characteristics and molecular epidemiology of noroviruses in outpatient children with acute gastroenteritis in Huzhou of China. PLoS One 10, e0127596.

  • 加载中

Article Metrics

Article views(1682) PDF downloads(18) Cited by()

Related
Proportional views

    Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017–2019

      Corresponding author: Jianbo Zhan, jbzhan8866@163.com
      Corresponding author: Jing Cheng, chengjing84@wust.edu.cn
    • a. Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China;
    • b. Wuhan University of Science and Technology, Wuhan, 430065, China

    Abstract: Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7–12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 = 8.108, P = 0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.

    Reference (64) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return