Citation: Shan Zong, Yan Wu, Weiling Li, Qiang You, Qian Peng, Chenghai Wang, Pin Wan, Tao Bai, Yanling Ma, Binlian Sun, Jialu Qiao. SARS-CoV-2 Nsp8 induces mitophagy by damaging mitochondria .VIROLOGICA SINICA, 2023, 38(4) : 520-530.  http://dx.doi.org/10.1016/j.virs.2023.05.003

SARS-CoV-2 Nsp8 induces mitophagy by damaging mitochondria

  • Autophagy plays an important role in the interaction between viruses and host cells. SARS-CoV-2 infection can disrupt the autophagy process in target cells. However, the precise molecular mechanism is still unknown. In this study, we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes. From further investigation, we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy. The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy. Moreover, both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy, in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy. This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy, which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.

  • 加载中
  • 10.1016j.virs.2023.05.003-ESM.docx
    1. Barbati, C., Celia, A.I., Colasanti, T., Vomero, M., Speziali, M., Putro, E., Buoncuore, G., Savino, F., Colafrancesco, S., Ucci, F.M., Ciancarella, C., Balbinot, E., Scarpa, S., Natalucci, F., Pellegrino, G., Ceccarelli, F., Spinelli, F.R., Mastroianni, C.M., Conti, F., Alessandri, C., 2022. Autophagy Hijacking in PBMC From COVID-19 Patients Results in Lymphopenia. Front Immunol. 13, 903498.

    2. Bignon, E., Marazzi, M., Grandemange, S., Monari, A., 2022. Autophagy and evasion of the immune system by SARS-CoV-2. Structural features of the non-structural protein 6 from wild type and Omicron viral strains interacting with a model lipid bilayer. Chem Sci. 13, 6098-6105.

    3. Biswal, M., Diggs, S., Xu, D., Khudaverdyan, N., Lu, J., Fang, J., Blaha, G., Hai, R., Song, J., 2021. Two conserved oligomer interfaces of NSP7 and NSP8 underpin the dynamic assembly of SARS-CoV-2 RdRP. Nucleic Acids Res. 49, 5956-5966.

    4. Brüggemann, Y., Kratzel, A., Almeida, L., Kelly, J.N., Thiel, V., Pfaender, S., 2023. Conserved requirement of autophagy-related effectors during coronavirus replication. Autophagy. 19, 731-733.

    5. Chen, X., Wang, K., Xing, Y., Tu, J., Yang, X., Zhao, Q., Li, K., Chen, Z., 2014. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell. 5, 912-27.

    6. Ding, B., Zhang, G., Yang, X., Zhang, S., Chen, L., Yan, Q., Xu, M., Banerjee, A.K., Chen, M., 2014. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. Cell Host Microbe. 15, 564-77.

    7. Ding, B., Zhang, L., Li, Z., Zhong, Y., Tang, Q., Qin, Y., Chen, M., 2017. The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host Microbe. 21, 538-547.e4.

    8. Domizio, J.D., Gulen, M.F., Saidoune, F., Thacker, V.V., Yatim, A., Sharma, K., Nass, T., Guenova, E., Schaller, M., Conrad, C., Goepfert, C., de Leval, L., Garnier, C.V., Berezowska, S., Dubois, A., Gilliet, M., Ablasser, A., 2022. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature. 603, 145-151.

    9. Elesela, S., Lukacs, N.W., 2021. Role of Mitochondria in Viral Infections. Life (Basel). 11, 232.

    10. Feng Q, Luo Y, Zhang XN, Yang XF, Hong XY, Sun DS, Li XC, Hu Y, Li XG, Zhang JF, Li X, Yang Y, Wang Q, Liu GP, Wang JZ, 2020. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation:a vicious cycle in Alzheimer neurodegeneration. Autophagy. 16, 641-658.

    11. Filomeni, G., Desideri, E., Cardaci, S., Rotilio, G., Ciriolo, M.R., 2010. Under the ROS…thiol network is the principal suspect for autophagy commitment. Autophagy. 6, 999-1005.

    12. Gibellini, L., De Biasi, S., Paolini, A., Borella, R., Boraldi, F., Mattioli, M., Lo Tartaro, D., Fidanza, L., Caro-Maldonado, A., Meschiari, M., Iadisernia, V., Bacca, E., Riva, G., Cicchetti, L., Quaglino, D., Guaraldi, G., Busani, S., Girardis, M., Mussini, C., Cossarizza, A., 2020. Altered bioenergetics and mitochondrial dysfunction of monocytes in patients with COVID-19 pneumonia. EMBO Mol Med. 12, e13001.

    13. Gordon, D.E., Jang, G.M., Bouhaddou, M., Xu, J., Obernier, K., White, K.M., O'Meara, M.J., Rezelj, V.V., Guo, J.Z., Swaney, D.L., Tummino, T.A., Hüttenhain, R., Kaake, R.M., 2020. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583, 459-468.

    14. Hayn, M., Hirschenberger, M., Koepke, L., Nchioua, R., Straub, J.H., Klute, S., Hunszinger, V., Zech, F., Prelli Bozzo, C., Aftab, W., 2021. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep. 35, 109126.

    15. Hillen, H.S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., Cramer, P., 2020. Structure of replicating SARS-CoV-2 polymerase. Nature. 584, 154-156.

    16. Hou, P., Wang, X., Wang, H., Wang, T., Yu, Z., Xu, C., Zhao, Y., Wang, W., Zhao, Y., Chu, F., Chang, H., Zhu, H., Lu, J., Zhang, F., Liang, X., Li, X., Wang, S., Gao, Y., He, H., 2023. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy. 19, 551-569.

    17. Hui, X., Zhang, L., Cao, L., Huang, K., Zhao, Y., Zhang, Y., Chen, X., Lin, X., Chen, M., Jin, M., 2021. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther. 6, 180.

    18. Jing-Yu Wang, Tian-Ning Li, Chun-Lei Zhou, Jie Zhao, Meng Wang, Yuan Wang, Yan Jiang, He-Nan Dong, Qian-Ru Qi, Hong Mu. Clinical and immunological features of convalescent pediatric patients infected with the SARS-CoV-2 Omicron variant in Tianjin, C hina.VIROLOGICA SINICA, 2022, 37:850-859.

    19. Klionsky, D.J., Abdel-Aziz, A.K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., Abeliovich, H., Sluimer, J.C., Stallings, C.L., Tong, C.K., 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 17, 1-382.

    20. Kumar, J., Jain, S., Meena, J., Yadav, A., 2021. Efficacy and safety of hydroxychloroquine/chloroquine against SARS-CoV-2 infection:A systematic review and meta-analysis. J Infect Chemother. 27, 882-889.

    21. Lai, J.H., Wang, M.Y., Huang, C.Y., Wu, C.H., Hung, L.F., Yang, C.Y., Ke, P.Y., Luo, S.F., Liu, S.J., Ho, L.J., 2018. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep. 19, e46182.

    22. Li, S., Zhang, Y., Guan, Z., Li, H., Ye, M., Chen, X., Shen, J., Zhou, Y., Shi, Z.L., Zhou, P., Peng, K., 2020. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct Target Ther. 5, 235.

    23. Li, W., He, P., Huang, Y., Li, Y.F., Lu, J., Li, M., Kurihara, H., Luo, Z., Meng, T., Onishi, M., Ma, C., Jiang, L., Hu, Y., Gong, Q., Zhu, D., Xu, Y., Liu, R., Liu, L., Yi, C., Zhu, Y., Ma, N., Okamoto, K., Xie, Z., Liu, J., He, R.R., Feng, D., 2021a. Selective autophagy of intracellular organelles:recent research advances. Theranostics. 11, 222-256.

    24. Li, W., Qiao, J., You, Q., Zong, S., Peng, Q., Liu, Y., Hu, S., Liu, W., Li, S., Shu, X., Sun, B., 2021b. SARS-CoV-2 Nsp5 Activates NF-κB Pathway by Upregulating SUMOylation of MAVS. Front Immunol. 12, 750969.

    25. Mehrzadi, S., Karimi, M.Y., Fatemi, A., Reiter, R.J., Hosseinzadeh, A., 2021. SARS-CoV-2 and other coronaviruses negatively influence mitochondrial quality control:beneficial effects of melatonin. Pharmacol Ther. 224, 107825.

    26. Miao, G., Zhao, H., Li, Y., Ji, M., Chen, Y., Shi, Y., Bi, Y., Wang, P., Zhang, H., 2021. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell. 56, 427-442.e5.

    27. Mizushima, N., Yoshimori, T., Levine, B., 2010. Methods in mammalian autophagy research. Cell. 140, 313-26.

    28. Onishi, M., Yamano, K., Sato, M., Matsuda, N., Okamoto, K., 2021. Molecular mechanisms and physiological functions of mitophagy. Embo j. 40, e104705.

    29. Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Bjørkøy, G., Johansen, T., 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 282, 24131-45.

    30. Qu, Y., Wang, X., Zhu, Y., Wang, W., Wang, Y., Hu, G., Liu, C., Li, J., Ren, S., Xiao, M.Z.X., Liu, Z., Wang, C., Fu, J., Zhang, Y., Li, P., Zhang, R., Liang, Q., 2021. ORF3a-Mediated Incomplete Autophagy Facilitates Severe Acute Respiratory Syndrome Coronavirus-2 Replication. Front Cell Dev Biol. 9, 716208.

    31. Rohaim, M.A., El Naggar, R.F., Clayton, E., Munir, M., 2021. Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog. 150, 104641.

    32. Roubicek, D.A., Souza-Pinto, N.C., 2017. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology. 391, 100-108.

    33. Saleh, J., Peyssonnaux, C., Singh, K.K., Edeas, M., 2020. Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion. 54, 1-7.

    34. Shang, C., Liu, Z., Zhu, Y., Lu, J., Ge, C., Zhang, C., Li, N., Jin, N., Li, Y., Tian, M., Li, X., 2021a. SARS-CoV-2 Causes Mitochondrial Dysfunction and Mitophagy Impairment. Front Microbiol. 12, 780768.

    35. Shang, C., Zhuang, X., Zhang, H., Li, Y., Zhu, Y., Lu, J., Ge, C., Cong, J., Li, T., Li, N., Tian, M., Jin, N., Li, X., 2021b. Inhibition of Autophagy Suppresses SARS-CoV-2 Replication and Ameliorates Pneumonia in hACE2 Transgenic Mice and Xenografted Human Lung Tissues. J Virol. 95, e0153721.

    36. Synowiec, A., Szczepański, A., Barreto-Duran, E., Lie, L.K., Pyrc, K., 2021. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2):a Systemic Infection. Clin Microbiol Rev. 34, e00133-20.

    37. Uddin, M., Mustafa, F., Rizvi, T.A., Loney, T., Suwaidi, H.A., Al-Marzouqi, A.H.H., Eldin, A.K., Alsabeeha, N., Adrian, T.E., Stefanini, C., Nowotny, N., Alsheikh-Ali, A., Senok, A.C., 2020. SARS-CoV-2/COVID-19:Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses. 12, 526.

    38. Vögtle, F.N., Wortelkamp, S., Zahedi, R.P., Becker, D., Leidhold, C., Gevaert, K., Kellermann, J., Voos, W., Sickmann, A., Pfanner, N., Meisinger, C., 2009. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell. 139, 428-39.

    39. Wang, R., Zhu, Y., Ren, C., Yang, S., Tian, S., Chen, H., Jin, M., Zhou, H., 2021. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy. 17, 496-511.

    40. Wei Yang, Songliu Yang, Lei Wang, Yuxin Zhou, Yu Xin, Hongxu Li, Wenjing Mu, Qi Wu, Lei Xu, Mingyan Zhao, Changsong Wang, Kaijiang Yu. Clinical characteristics of 310 SARS-CoV-2 Omicron variant patients and comparison with Delta and Beta variant patients in China.VIROLOGICA SINICA, 2022, 37(5):704-715.

    41. Yoshimoto, F.K., 2020. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 39, 198-216.

    42. Zhang, X., Xiong, Y., Zhang, J., Shao, T., Chen, S., Miao, B., Wang, Z., Du, Q., Huang, Y., Tong, D., 2019. Autophagy Promotes Porcine Parvovirus Replication and Induces Non-Apoptotic Cell Death in Porcine Placental Trophoblasts. Viruses. 12, 15.

    43. Zhao, Z., Lu, K., Mao, B., Liu, S., Trilling, M., Huang, A., Lu, M., Lin, Y., 2021. The interplay between emerging human coronavirus infections and autophagy. Emerg Microbes Infect. 10, 196-205.

  • 加载中

Article Metrics

Article views(1683) PDF downloads(26) Cited by()

Related
Proportional views

    SARS-CoV-2 Nsp8 induces mitophagy by damaging mitochondria

      Corresponding author: Binlian Sun, binlian17@jhun.edu.cn
      Corresponding author: Jialu Qiao, jialuqiao@jhun.edu.cn
    • a. Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China;
    • b. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;
    • c. Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China;
    • d. Division of Gastroenterology, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China;
    • e. Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China

    Abstract: Autophagy plays an important role in the interaction between viruses and host cells. SARS-CoV-2 infection can disrupt the autophagy process in target cells. However, the precise molecular mechanism is still unknown. In this study, we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes. From further investigation, we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy. The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy. Moreover, both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy, in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy. This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy, which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.

    Reference (43) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return