Citation: Jie Sheng, Lili Li, Xueying Lv, Meiling Gao, Ziyi Chen, Zhuo Zhou, Jingfeng Wang, Aiping Wu, Taijiao Jiang. Integrated interactome and transcriptome analysis reveals key host factors critical for SARS-CoV-2 infection .VIROLOGICA SINICA, 2023, 38(4) : 508-519.  http://dx.doi.org/10.1016/j.virs.2023.05.004

Integrated interactome and transcriptome analysis reveals key host factors critical for SARS-CoV-2 infection

  • The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has seriously threatened global public health and caused huge economic losses. Omics studies of SARS-CoV-2 can help understand the interaction between the virus and host, thereby providing a new perspective in guiding the intervention and treatment of the SARS-CoV-2 infection. Since large amount of SARS-CoV-2 omics data have been accumulated in public databases, this study aimed to identify key host factors involved in SARS-CoV-2 infection through systematic integration of transcriptome and interactome data. By manually curating published studies, we obtained a comprehensive SARS-CoV-2-human protein-protein interactions (PPIs) network, comprising 3591 human proteins interacting with 31 SARS-CoV-2 viral proteins. Using the RobustRankAggregation method, we identified 123 multiple cell line common genes (CLCGs), of which 115 up-regulated CLCGs showed host enhanced innate immunity and chemotactic response signatures. Combined with network analysis, co-expression and functional enrichment analysis, we discovered four key host factors involved in SARS-CoV-2 infection: IFITM1, SERPINE1, DDX60, and TNFAIP2. Furthermore, SERPINE1 was found to facilitate SARS-CoV-2 replication, and can alleviate the endoplasmic reticulum (ER) stress induced by ORF8 protein through interaction with ORF8. Our findings highlight the importance of systematic integration analysis in understanding SARS-CoV-2-human interactions and provide valuable insights for future research on potential therapeutic targets against SARS-CoV-2 infection.

  • 加载中
  • 10.1016j.virs.2023.05.004-ESM2.docx
    10.1016j.virs.2023.05.004-ESM1.xlsx
    1. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. 2020. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N Engl J Med, 383:120-128.

    2. Aevermann BD, Pickett BE, Kumar S, Klem EB, Agnihothram S, Askovich PS, Bankhead A, 3rd, Bolles M, Carter V, Chang J, Clauss TR, Dash P, Diercks AH, Eisfeld AJ, Ellis A, Fan S, Ferris MT, Gralinski LE, Green RR, Gritsenko MA, Hatta M, Heegel RA, Jacobs JM, Jeng S, Josset L, Kaiser SM, Kelly S, Law GL, Li C, Li J, Long C, Luna ML, Matzke M, McDermott J, Menachery V, Metz TO, Mitchell H, Monroe ME, Navarro G, Neumann G, Podyminogin RL, Purvine SO, Rosenberger CM, Sanders CJ, Schepmoes AA, Shukla AK, Sims A, Sova P, Tam VC, Tchitchek N, Thomas PG, Tilton SC, Totura A, Wang J, Webb-Robertson BJ, Wen J, Weiss JM, Yang F, Yount B, Zhang Q, McWeeney S, Smith RD, Waters KM, Kawaoka Y, Baric R, Aderem A, Katze MG, Scheuermann RH. 2014. A comprehensive collection of systems biology data characterizing the host response to viral infection. Sci Data, 1:140033.

    3. Anders S, Pyl PT, Huber W. 2015. Htseq——a python framework to work with high-throughput sequencing data. Bioinformatics, 31:166-169.

    4. Araf Y, Akter F, Tang YD, Fatemi R, Parvez MSA, Zheng C, Hossain MG. 2022. Omicron variant of sars-cov-2:Genomics, transmissibility, and responses to current covid-19 vaccines. J Med Virol, 94:1825-1832.

    5. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. 2020a. Imbalanced host response to sars-cov-2 drives development of covid-19. Cell, 181:1036-1045.e1039.

    6. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. 2020b. Imbalanced host response to sars-cov-2 drives development of covid-19. Cell, 181:1036-1045.e1039.

    7. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic:A flexible trimmer for illumina sequence data. Bioinformatics, 30:2114-2120.

    8. Boudewijns R, Thibaut HJ, Kaptein SJF, Li R, Vergote V, Seldeslachts L, Van Weyenbergh J, De Keyzer C, Bervoets L, Sharma S, Liesenborghs L, Ma J, Jansen S, Van Looveren D, Vercruysse T, Wang X, Jochmans D, Martens E, Roose K, De Vlieger D, Schepens B, Van Buyten T, Jacobs S, Liu Y, Martí-Carreras J, Vanmechelen B, Wawina-Bokalanga T, Delang L, Rocha-Pereira J, Coelmont L, Chiu W, Leyssen P, Heylen E, Schols D, Wang L, Close L, Matthijnssens J, Van Ranst M, Compernolle V, Schramm G, Van Laere K, Saelens X, Callewaert N, Opdenakker G, Maes P, Weynand B, Cawthorne C, Vande Velde G, Wang Z, Neyts J, Dallmeier K. 2020. Stat2 signaling restricts viral dissemination but drives severe pneumonia in sars-cov-2 infected hamsters. Nat Commun, 11:5838.

    9. Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel-Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O. 2020. Syncytia formation by sars-cov-2-infected cells. Embo j, 39:e106267.

    10. Chakraborty C, Sharma AR, Bhattacharya M, Zayed H, Lee SS. 2021. Understanding gene expression and transcriptome profiling of covid-19:An initiative towards the mapping of protective immunity genes against sars-cov-2 infection. Front Immunol, 12:724936.

    11. Chen N, Zhang B, Deng L, Liang B, Ping J. 2022. Virus-host interaction networks as new antiviral drug targets for iav and sars-cov-2. Emerg Microbes Infect, 11:1371-1389.

    12. Chen Y, Liu Q, Guo D. 2020. Emerging coronaviruses:Genome structure, replication, and pathogenesis. J Med Virol, 92:418-423.

    13. Chevrier N, Mertins P, Artyomov MN, Shalek AK, Iannacone M, Ciaccio MF, Gat-Viks I, Tonti E, DeGrace MM, Clauser KR, Garber M, Eisenhaure TM, Yosef N, Robinson J, Sutton A, Andersen MS, Root DE, von Andrian U, Jones RB, Park H, Carr SA, Regev A, Amit I, Hacohen N. 2011. Systematic discovery of tlr signaling components delineates viral-sensing circuits. Cell, 147:853-867.

    14. Cucinotta D, Vanelli M. 2020. Who declares covid-19 a pandemic. Acta Biomed, 91:157-160.

    15. Dittmann M, Hoffmann HH, Scull MA, Gilmore RH, Bell KL, Ciancanelli M, Wilson SJ, Crotta S, Yu Y, Flatley B, Xiao JW, Casanova JL, Wack A, Bieniasz PD, Rice CM. 2015. A serpin shapes the extracellular environment to prevent influenza a virus maturation. Cell, 160:631-643.

    16. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. Star:Ultrafast universal rna-seq aligner. Bioinformatics, 29:15-21.

    17. Fagone P, Ciurleo R, Lombardo SD, Iacobello C, Palermo CI, Shoenfeld Y, Bendtzen K, Bramanti P, Nicoletti F. 2020. Transcriptional landscape of sars-cov-2 infection dismantles pathogenic pathways activated by the virus, proposes unique sex-specific differences and predicts tailored therapeutic strategies. Autoimmun Rev, 19:102571.

    18. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G. 2008. Viral control of mitochondrial apoptosis. PLoS Pathog, 4:e1000018.

    19. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang X-P, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang H-Y, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. 2020a. A sars-cov-2 protein interaction map reveals targets for drug repurposing. Nature, 583:459-468.

    20. Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M, Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G, O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D, Hüttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M, Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH, Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC, Burke D, Koh C, Vallet T, Silvas JA, Azumaya CM, Billesbølle C, Brilot AF, Campbell MG, Diallo A, Dickinson MS, Diwanji D, Herrera N, Hoppe N, Kratochvil HT, Liu Y, Merz GE, Moritz M, Nguyen HC, Nowotny C, Puchades C, Rizo AN, Schulze-Gahmen U, Smith AM, Sun M, Young ID, Zhao J, Asarnow D, Biel J, Bowen A, Braxton JR, Chen J, Chio CM, Chio US, Deshpande I, Doan L, Faust B, Flores S, Jin M, Kim K, Lam VL, Li F, Li J, Li YL, Li Y, Liu X, Lo M, Lopez KE, Melo AA, Moss FR, 3rd, Nguyen P, Paulino J, Pawar KI, Peters JK, Pospiech TH, Jr., Safari M, Sangwan S, Schaefer K, Thomas PV, Thwin AC, Trenker R, Tse E, Tsui TKM, Wang F, Whitis N, Yu Z, Zhang K, Zhang Y, Zhou F, Saltzberg D, Hodder AJ, Shun-Shion AS, Williams DM, White KM, Rosales R, Kehrer T, Miorin L, Moreno E, Patel AH, Rihn S, Khalid MM, Vallejo-Gracia A, Fozouni P, Simoneau CR, Roth TL, Wu D, Karim MA, Ghoussaini M, Dunham I, Berardi F, Weigang S, Chazal M, Park J, Logue J, McGrath M, Weston S, Haupt R, Hastie CJ, Elliott M, Brown F, Burness KA, Reid E, Dorward M, Johnson C, Wilkinson SG, Geyer A, Giesel DM, Baillie C, Raggett S, Leech H, Toth R, Goodman N, Keough KC, Lind AL, Klesh RJ, Hemphill KR, Carlson-Stevermer J, Oki J, Holden K, Maures T, Pollard KS, Sali A, Agard DA, Cheng Y, Fraser JS, Frost A, Jura N, Kortemme T, Manglik A, Southworth DR, Stroud RM, Alessi DR, Davies P, Frieman MB, Ideker T, Abate C, Jouvenet N, Kochs G, Shoichet B, Ott M, Palmarini M, Shokat KM, García-Sastre A, Rassen JA, Grosse R, Rosenberg OS, Verba KA, Basler CF, Vignuzzi M, Peden AA, Beltrao P, Krogan NJ. 2020b. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 370.

    21. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, Dela Cruz CS, Dumont A, Halene S, Hwa J, Koff J, Menninger H, Neparidze N, Price C, Siner JM, Tormey C, Rinder HM, Chun HJ, Lee AI. 2020. Endotheliopathy in covid-19-associated coagulopathy:Evidence from a single-centre, cross-sectional study. Lancet Haematol, 7:e575-e582.

    22. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, Breillat P, Carlier N, Gauzit R, Morbieu C, Pène F, Marin N, Roche N, Szwebel TA, Merkling SH, Treluyer JM, Veyer D, Mouthon L, Blanc C, Tharaux PL, Rozenberg F, Fischer A, Duffy D, Rieux-Laucat F, Kernéis S, Terrier B. 2020. Impaired type i interferon activity and inflammatory responses in severe covid-19 patients. Science, 369:718-724.

    23. Harrison AG, Lin T, Wang P. 2020. Mechanisms of sars-cov-2 transmission and pathogenesis. Trends Immunol, 41:1100-1115.

    24. Hu B, Huang S, Yin L. 2021. The cytokine storm and covid-19. J Med Virol, 93:250-256.

    25. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet, 395:497-506.

    26. Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M. 2011. Distinct patterns of ifitm-mediated restriction of filoviruses, sars coronavirus, and influenza a virus. PLoS Pathog, 7:e1001258.

    27. Jia L, Shi Y, Wen Y, Li W, Feng J, Chen C. 2018. The roles of tnfaip2 in cancers and infectious diseases. J Cell Mol Med, 22:5188-5195.

    28. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, Ma'ayan A. 2019. Chea3:Transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res, 47:W212-w224.

    29. Kolde R, Laur S, Adler P, Vilo J. 2012. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics, 28:573-580.

    30. Li CX, Gao J, Zhang Z, Chen L, Li X, Zhou M, Wheelock Å M. 2022. Multiomics integration-based molecular characterizations of covid-19. Brief Bioinform, 23.

    31. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang S, Zhang Z. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with covid-19. Nat Med, 26:842-844.

    32. Liu P, Wang X, Sun Y, Zhao H, Cheng F, Wang J, Yang F, Hu J, Zhang H, Wang CC, Wang L. 2022. Sars-cov-2 orf8 reshapes the er through forming mixed disulfides with er oxidoreductases. Redox Biol, 54:102388.

    33. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for rna-seq data with deseq2. Genome Biol, 15:550.

    34. Luck K, Kim DK, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B, Choi D, Coté AG, Daley M, Deimling S, Desbuleux A, Dricot A, Gebbia M, Hardy MF, Kishore N, Knapp JJ, Kovács IA, Lemmens I, Mee MW, Mellor JC, Pollis C, Pons C, Richardson AD, Schlabach S, Teeking B, Yadav A, Babor M, Balcha D, Basha O, Bowman-Colin C, Chin SF, Choi SG, Colabella C, Coppin G, D'Amata C, De Ridder D, De Rouck S, Duran-Frigola M, Ennajdaoui H, Goebels F, Goehring L, Gopal A, Haddad G, Hatchi E, Helmy M, Jacob Y, Kassa Y, Landini S, Li R, van Lieshout N, MacWilliams A, Markey D, Paulson JN, Rangarajan S, Rasla J, Rayhan A, Rolland T, San-Miguel A, Shen Y, Sheykhkarimli D, Sheynkman GM, Simonovsky E, Taşan M, Tejeda A, Tropepe V, Twizere JC, Wang Y, Weatheritt RJ, Weile J, Xia Y, Yang X, Yeger-Lotem E, Zhong Q, Aloy P, Bader GD, De Las Rivas J, Gaudet S, Hao T, Rak J, Tavernier J, Hill DE, Vidal M, Roth FP, Calderwood MA. 2020. A reference map of the human binary protein interactome. Nature, 580:402-408.

    35. Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH, Chen W, Moni MA. 2021. Bioinformatics and system biology approach to identify the influences of sars-cov-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform, 22.

    36. Mao G, Zhang N. 2013. Analysis of average shortest-path length of scale-free network. Journal of Applied Mathematics, 2013:865643.

    37. Mazel-Sanchez B, Iwaszkiewicz J, Bonifacio JPP, Silva F, Niu C, Strohmeier S, Eletto D, Krammer F, Tan G, Zoete V, Hale BG, Schmolke M. 2021. Influenza a viruses balance er stress with host protein synthesis shutoff. Proc Natl Acad Sci U S A, 118.

    38. Miyashita M, Oshiumi H, Matsumoto M, Seya T. 2011. Ddx60, a dexd/h box helicase, is a novel antiviral factor promoting rig-i-like receptor-mediated signaling. Mol Cell Biol, 31:3802-3819.

    39. Mu J, Fang Y, Yang Q, Shu T, Wang A, Huang M, Jin L, Deng F, Qiu Y, Zhou X. 2020. Sars-cov-2 n protein antagonizes type i interferon signaling by suppressing phosphorylation and nuclear translocation of stat1 and stat2. Cell Discov, 6:65.

    40. Oshiumi H, Miyashita M, Okamoto M, Morioka Y, Okabe M, Matsumoto M, Seya T. 2015. Ddx60 is involved in rig-i-dependent and independent antiviral responses, and its function is attenuated by virus-induced egfr activation. Cell Rep, 11:1193-1207.

    41. Perrin-Cocon L, Diaz O, Jacquemin C, Barthel V, Ogire E, Ramière C, André P, Lotteau V, Vidalain PO. 2020. The current landscape of coronavirus-host protein-protein interactions. J Transl Med, 18:319.

    42. Pfefferle S, Krähling V, Ditt V, Grywna K, Mühlberger E, Drosten C. 2009. Reverse genetic characterization of the natural genomic deletion in sars-coronavirus strain frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol J, 6:131.

    43. Prelli Bozzo C, Nchioua R, Volcic M, Koepke L, Krüger J, Schütz D, Heller S, Stürzel CM, Kmiec D, Conzelmann C, Müller J, Zech F, Braun E, Groß R, Wettstein L, Weil T, Weiß J, Diofano F, Rodríguez Alfonso AA, Wiese S, Sauter D, Münch J, Goffinet C, Catanese A, Schön M, Boeckers TM, Stenger S, Sato K, Just S, Kleger A, Sparrer KMJ, Kirchhoff F. 2021. Ifitm proteins promote sars-cov-2 infection and are targets for virus inhibition in vitro. Nat Commun, 12:4584.

    44. Ramasamy S, Subbian S. 2021. Critical determinants of cytokine storm and type i interferon response in covid-19 pathogenesis. Clin Microbiol Rev, 34.

    45. Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He J, Ma W, He J, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li Y-M, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu S-Q, Luo M, Ma Q, Song Q, Sun W, Wang G, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao P, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Bei J-X, Wei L, Bian X-W, Liu X, Cheng T, Li X, Zhao P, Wang F-S, Wang H, Su B, Zhang Z, Qu K, Wang X, Chen J, Jin R, Zhang Z. 2021. Covid-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell:S0092-8674(0021)00148-00143.

    46. Sano R, Reed JC. 2013. Er stress-induced cell death mechanisms. Biochim Biophys Acta, 1833:3460-3470.

    47. Shi G, Kenney AD, Kudryashova E, Zani A, Zhang L, Lai KK, Hall-Stoodley L, Robinson RT, Kudryashov DS, Compton AA, Yount JS. 2021. Opposing activities of ifitm proteins in sars-cov-2 infection. Embo j, 40:e106501.

    48. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. 2019. Comprehensive integration of single-cell data. Cell, 177:1888-1902.e1821.

    49. Su G, Morris JH, Demchak B, Bader GD. 2014. Biological network exploration with cytoscape 3. Curr Protoc Bioinformatics, 47:8.13.11-24.

    50. Sun J, Ye F, Wu A, Yang R, Pan M, Sheng J, Zhu W, Mao L, Wang M, Xia Z, Huang B, Tan W, Jiang T. 2020. Comparative transcriptome analysis reveals the intensive early stage responses of host cells to sars-cov-2 infection. Front Microbiol, 11:593857.

    51. Suryawanshi RK, Koganti R, Agelidis A, Patil CD, Shukla D. 2021. Dysregulation of cell signaling by sars-cov-2. Trends Microbiol, 29:224-237.

    52. Tan SL, Ganji G, Paeper B, Proll S, Katze MG. 2007. Systems biology and the host response to viral infection. Nat Biotechnol, 25:1383-1389.

    53. Terracciano R, Preianò M, Fregola A, Pelaia C, Montalcini T, Savino R. 2021. Mapping the sars-cov-2-host protein-protein interactome by affinity purification mass spectrometry and proximity-dependent biotin labeling:A rational and straightforward route to discover host-directed anti-sars-cov-2 therapeutics. Int J Mol Sci, 22.

    54. Wang X, Xu G, Liu X, Liu Y, Zhang S, Zhang Z. 2021. Multiomics:Unraveling the panoramic landscapes of sars-cov-2 infection. Cell Mol Immunol, 18:2313-2324.

    55. Wettstein L, Weil T, Conzelmann C, Müller JA, Groß R, Hirschenberger M, Seidel A, Klute S, Zech F, Prelli Bozzo C, Preising N, Fois G, Lochbaum R, Knaff PM, Mailänder V, Ständker L, Thal DR, Schumann C, Stenger S, Kleger A, Lochnit G, Mayer B, Ruiz-Blanco YB, Hoffmann M, Sparrer KMJ, Pöhlmann S, Sanchez-Garcia E, Kirchhoff F, Frick M, Münch J. 2021. Alpha-1 antitrypsin inhibits tmprss2 protease activity and sars-cov-2 infection. Nat Commun, 12:1726.

    56. Wrensch F, Winkler M, Pöhlmann S. 2014. Ifitm proteins inhibit entry driven by the mers-coronavirus spike protein:Evidence for cholesterol-independent mechanisms. Viruses, 6:3683-3698.

    57. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, Meng J, Zhu Z, Zhang Z, Wang J, Sheng J, Quan L, Xia Z, Tan W, Cheng G, Jiang T. 2020. Genome composition and divergence of the novel coronavirus (2019-ncov) originating in china. Cell Host Microbe, 27:325-328.

    58. Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, Menachery VD, Rajsbaum R, Shi PY. 2020. Evasion of type i interferon by sars-cov-2. Cell Rep, 33:108234.

    59. Yang H, Rao Z. 2021. Structural biology of sars-cov-2 and implications for therapeutic development. Nat Rev Microbiol, 19:685-700.

    60. Yu G, Wang LG, Han Y, He QY. 2012. Clusterprofiler:An r package for comparing biological themes among gene clusters. Omics, 16:284-287.

    61. Zhang J, Cruz-Cosme R, Zhuang MW, Liu D, Liu Y, Teng S, Wang PH, Tang Q. 2020a. A systemic and molecular study of subcellular localization of sars-cov-2 proteins. Signal Transduct Target Ther, 5:269.

    62. Zhang P, Su C, Jiang Z, Zheng C. 2017. Herpes simplex virus 1 ul41 protein suppresses the ire1/xbp1 signal pathway of the unfolded protein response via its rnase activity. J Virol, 91.

    63. Zhang X, Tan Y, Ling Y, Lu G, Liu F, Yi Z, Jia X, Wu M, Shi B, Xu S, Chen J, Wang W, Chen B, Jiang L, Yu S, Lu J, Wang J, Xu M, Yuan Z, Zhang Q, Zhang X, Zhao G, Wang S, Chen S, Lu H. 2020b. Viral and host factors related to the clinical outcome of covid-19. Nature, 583:437-440.

    64. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, Xia B, Ma X, Yang T, Yu F. 2021a. The orf8 protein of sars-cov-2 mediates immune evasion through down-regulating mhc-ι. Proceedings of the National Academy of Sciences, 118:e2024202118.

    65. Zhang Z, Ye S, Wu A, Jiang T, Peng Y. 2021b. Prediction of the receptorome for the human-infecting virome. Virol Sin, 36:133-140.

    66. Zuo Y, Warnock M, Harbaugh A, Yalavarthi S, Gockman K, Zuo M, Madison JA, Knight JS, Kanthi Y, Lawrence DA. 2021. Plasma tissue plasminogen activator and plasminogen activator inhibitor-1 in hospitalized covid-19 patients. Sci Rep, 11:1580.

  • 加载中

Article Metrics

Article views(2561) PDF downloads(19) Cited by()

Related
Proportional views

    Integrated interactome and transcriptome analysis reveals key host factors critical for SARS-CoV-2 infection

      Corresponding author: Jingfeng Wang, wangjf@ism.cams.cn
      Corresponding author: Aiping Wu, wap@ism.cams.cn
      Corresponding author: Taijiao Jiang, jiang_taijiao@gzlab.ac.cn
    • a. Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China;
    • b. Suzhou Institute of Systems Medicine, Suzhou, 215123, China;
    • c. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China;
    • d. Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China;
    • e. Guangzhou Laboratory, Guangzhou, 510005, China;
    • f. State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China

    Abstract: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has seriously threatened global public health and caused huge economic losses. Omics studies of SARS-CoV-2 can help understand the interaction between the virus and host, thereby providing a new perspective in guiding the intervention and treatment of the SARS-CoV-2 infection. Since large amount of SARS-CoV-2 omics data have been accumulated in public databases, this study aimed to identify key host factors involved in SARS-CoV-2 infection through systematic integration of transcriptome and interactome data. By manually curating published studies, we obtained a comprehensive SARS-CoV-2-human protein-protein interactions (PPIs) network, comprising 3591 human proteins interacting with 31 SARS-CoV-2 viral proteins. Using the RobustRankAggregation method, we identified 123 multiple cell line common genes (CLCGs), of which 115 up-regulated CLCGs showed host enhanced innate immunity and chemotactic response signatures. Combined with network analysis, co-expression and functional enrichment analysis, we discovered four key host factors involved in SARS-CoV-2 infection: IFITM1, SERPINE1, DDX60, and TNFAIP2. Furthermore, SERPINE1 was found to facilitate SARS-CoV-2 replication, and can alleviate the endoplasmic reticulum (ER) stress induced by ORF8 protein through interaction with ORF8. Our findings highlight the importance of systematic integration analysis in understanding SARS-CoV-2-human interactions and provide valuable insights for future research on potential therapeutic targets against SARS-CoV-2 infection.

    Reference (66) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return