Citation: Kerong Wang, Jian Zhang, Yongheng Yang, Yue Si, Ziqing Zhou, Xudong Zhu, Sushan Wu, He Liu, Hui Zhang, Liang Zhang, Linfeng Cheng, Wei Ye, Xin Lv, Yingfeng Lei, Xijing Zhang, Shilin Cheng, Lixin Shen, Fanglin Zhang, Hongwei Ma. STING strengthens host anti-hantaviral immunity through an interferon-independent pathway .VIROLOGICA SINICA, 2023, 38(4) : 568-584.  http://dx.doi.org/10.1016/j.virs.2023.06.006

STING strengthens host anti-hantaviral immunity through an interferon-independent pathway

  • Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.

  • 加载中
  • 10.1016j.virs.2023.06.006-ESM.docx
    1. Aguirre, S., Luthra, P., Sanchez-Aparicio, M. T., Maestre, A. M., Patel, J., Lamothe, F., Fredericks, A. C., Tripathi, S., Zhu, T., Pintado-Silva, J., Webb, L. G., Bernal-Rubio, D., Solovyov, A., Greenbaum, B., Simon, V., Basler, C. F., Mulder, L. C., García-Sastre, A., Fernandez-Sesma, A. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol, 2, 17037.

    2. Aguirre, S., Maestre, A. M., Pagni, S., Patel, J. R., Savage, T., Gutman, D., Maringer, K., Bernal-Rubio, D., Shabman, R. S., Simon, V., Rodriguez-Madoz, J. R., Mulder, L. C., Barber, G. N., Fernandez-Sesma, A. 2012. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog, 8, e1002934.

    3. Banete, A., Seaver, K., Bakshi, D., Gee, K., Basta, S. 2018. On taking the STING out of immune activation. J Leukoc Biol, 10, 1002.

    4. Brubaker, S. W., Bonham, K. S., Zanoni, I., Kagan, J. C. 2015. Innate immune pattern recognition:a cell biological perspective. Annu Rev Immunol, 33, 257-90.

    5. Choi, Y., Bowman, J. W., Jung, J. U. 2018. Autophagy during viral infection-a double-edged sword. Nat Rev Microbiol, 16, 341-354.

    6. Citil Dogan, A., Wayne, S., Bauer, S., Ogunyemi, D., Kulkharni, S. K., Maulik, D., Carpenter, C. F., Bahado-Singh, R. O. 2017. The Zika virus and pregnancy:evidence, management, and prevention. J Matern Fetal Neonatal Med, 30, 386-396.

    7. Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C., Ciechanover, A. 2016. The ubiquitin-proteasome system and autophagy:Coordinated and independent activities. Int J Biochem Cell Biol, 79, 403-418.

    8. Cross, B. C., Bond, P. J., Sadowski, P. G., Jha, B. K., Zak, J., Goodman, J. M., Silverman, R. H., Neubert, T. A., Baxendale, I. R., Ron, D., Harding, H. P. 2012. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A, 109, E869-78.

    9. Dasgupta, Y., Golovine, K., Nieborowska-Skorska, M., Luo, L., Matlawska-Wasowska, K., Mullighan, C. G., Skorski, T. 2018. Drugging DNA repair to target T-ALL cells. Leuk Lymphoma, 59, 1746-1749.

    10. Decout, A., Katz, J. D., Venkatraman, S., Ablasser, A. 2021. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol, 21, 548-569.

    11. Di Conza, G., Ho, P. C. 2020. ER Stress Responses:An Emerging Modulator for Innate Immunity. Cells 9, 695.

    12. Eckard, S. C., Rice, G. I., Fabre, A., Badens, C., Gray, E. E., Hartley, J. L., Crow, Y. J., Stetson, D. B. 2014. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol, 15, 839-845.

    13. Fischer, T. D., Wang, C., Padman, B. S., Lazarou, M., Youle, R. J. 2020. STING induces LC3B lipidation onto single-membrane vesicles via the, V-ATPase and ATG16L1-WD40 domain. J Cell Biol, 219, e202009128.

    14. Franz, K. M., Neidermyer, W. J., Tan, Y. J., Whelan, S. P. J., Kagan, J. C. 2018. STING-dependent translation inhibition restricts RNA virus replication. Proc Natl Acad Sci U S A, 115, E2058-e2067.

    15. Fu, Z., Zhang, X., Zhou, X., Ur-Rehman, U., Yu, M., Liang, H., Guo, H., Guo, X., Kong, Y., Su, Y., Ye, Y., Hu, X., Cheng, W., Wu, J., Wang, Y., Gu, Y., Lu, S. F., Wu, D., Zen, K., Li, J., Yan, C., Zhang, C. Y., Chen, X. 2021. In vivo self-assembled small RNAs as a new generation of RNAi therapeutics. Cell Res, 31, 631-648.

    16. Geimonen, E., Neff, S., Raymond, T., Kocer, S. S., Gavrilovskaya, I. N., Mackow, E. R. 2002. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc Natl Acad Sci U S A, 99, 13837-13842.

    17. Gonugunta, V. K., Sakai, T., Pokatayev, V., Yang, K., Wu, J., Dobbs, N., Yan, N. 2017. Trafficking-Mediated STING Degradation Requires Sorting to Acidified Endolysosomes and Can Be Targeted to Enhance Anti-tumor Response. Cell Rep, 21, 3234-3242.

    18. Gui, X., Yang, H., Li, T., Tan, X., Shi, P., Li, M., Du, F., Chen, Z. J. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature, 567, 262-266.

    19. Han, L., Zheng, Y., Deng, J., Nan, M. L., Xiao, Y., Zhuang, M. W., Zhang, J., Wang, W., Gao, C., Wang, P. H. 2022. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy. J Med Virol, 94, 5174-5188.

    20. Handke, W., Oelschlegel, R., Franke, R., Krüger, D. H., Rang, A. 2009. Hantaan virus triggers TLR3-dependent innate immune responses. J Immunol, 182, 2849-2858.

    21. Hu, M. M., Yang, Q., Xie, X. Q., Liao, C. Y., Lin, H., Liu, T. T., Yin, L., Shu, H. B. 2016. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity, 45, 555-569.

    22. Ishikawa, H., Barber, G. N. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 455, 674-678.

    23. Ishikawa, H., Ma, Z., Barber, G. N. 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 461, 788-792.

    24. Ji, L., Wang, Y., Zhou, L., Lu, J., Bao, S., Shen, Q., Wang, X., Liu, Y., Zhang, W. 2022. E3 Ubiquitin Ligases:The Operators of the Ubiquitin Code That Regulates the RLR and cGAS-STING Pathways. Int J Mol Sci, 23, 14601.

    25. Jiang, H., Wang, P. Z., Zhang, Y., Xu, Z., Sun, L., Wang, L. M., Huang, C. X., Lian, J. Q., Jia, Z. S., Li, Z. D., Bai, X. F. 2008. Hantaan virus induces toll-like receptor 4 expression, leading to enhanced production of beta interferon, interleukin-6 and tumor necrosis factor-alpha. Virology, 380, 52-59.

    26. Jiang, H., Zheng, X., Wang, L., Du, H., Wang, P., Bai, X. 2017. Hantavirus infection:a global zoonotic challenge. Virol Sin, 32, 32-43.

    27. Kell, A. M., Hemann, E. A., Turnbull, J. B., Gale, M., Jr. 2020. RIG-I-like receptor activation drives type I IFN and antiviral signaling to limit Hantaan orthohantavirus replication. PLoS Pathog, 16, e1008483.

    28. Kumar, H., Kawai, T., Akira, S. 2011. Pathogen recognition by the innate immune system. Int Rev Immunol, 30, 16-34.

    29. Kumar, V. 2019. A STING to inflammation and autoimmunity. J Leukoc Biol, 106, 171-185.

    30. Lawson, N. D., Stillman, E. A., Whitt, M. A., Rose, J. K. 1995. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A, 92, 4477-4481.

    31. Lencer, W. I., Deluca, H., Grey, M. J., Cho, J. A. 2015. Innate immunity at mucosal surfaces:the IRE1-RIDD-RIG-I pathway. Trends Immunol, 36, 401-409.

    32. Li, C., Feng, L., Luo, W. W., Lei, C. Q., Li, M., Shu, H. B. 2021. The RNA-binding protein LUC7L2 mediates MITA/STING intron retention to negatively regulate innate antiviral response. Cell Discov, 7, 46.

    33. Li, Y., He, M., Wang, Z., Duan, Z., Guo, Z., Wang, Z., Gong, R., Chu, T., Cai, J., Gao, B. 2022. STING signaling activation inhibits HBV replication and attenuates the severity of liver injury and HBV-induced fibrosis. Cell Mol Immunol, 19, 92-107.

    34. Liu, D., Wu, H., Wang, C., Li, Y., Tian, H., Siraj, S., Sehgal, S. A., Wang, X., Wang, J., Shang, Y., Jiang, Z., Liu, L., Chen, Q. 2019a. STING directly activates autophagy to tune the innate immune response. Cell Death Differ, 26, 1735-1749.

    35. Liu, R., Ma, H., Shu, J., Zhang, Q., Han, M., Liu, Z., Jin, X., Zhang, F., Wu, X. 2019b. Vaccines and Therapeutics Against Hantaviruses. Front Microbiol, 10, 2989.

    36. Liu, Y., Goulet, M. L., Sze, A., Hadj, S. B., Belgnaoui, S. M., Lababidi, R. R., Zheng, C., Fritz, J. H., Olagnier, D., Lin, R. 2016. RIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection. J Virol, 90, 9406-9419.

    37. Lu, D. H., Jiang, H., Lian, J. Q. 2021. Hantavirus Infection during Pregnancy. Virol Sin, 36, 345-353.

    38. Ma, H., Han, P., Ye, W., Chen, H., Zheng, X., Cheng, L., Zhang, L., Yu, L., Wu, X., Xu, Z., Lei, Y., Zhang, F. 2017. The Long Noncoding RNA NEAT1 Exerts Antihantaviral Effects by Acting as Positive Feedback for RIG-I Signaling. J Virol 91, e02250-16.

    39. Matthys, V., Mackow, E. R. 2012. Hantavirus regulation of type I interferon responses. Adv Virol, 2012, 524024.

    40. Meier, K., Thorkelsson, S. R., Quemin, E. R. J., Rosenthal, M. 2021. Hantavirus Replication Cycle-An Updated Structural Virology Perspective. Viruses 13, 1561.

    41. Muyangwa, M., Martynova, E. V., Khaiboullina, S. F., Morzunov, S. P., Rizvanov, A. A. 2015. Hantaviral Proteins:Structure, Functions, and Role in Hantavirus Infection. Front Microbiol, 6, 1326.

    42. Nazmi, A., Mukhopadhyay, R., Dutta, K., Basu, A. 2012. STING mediates neuronal innate immune response following Japanese encephalitis virus infection. Sci Rep, 2, 347.

    43. Ni, G., Ma, Z., Damania, B. 2018. cGAS and STING:At the intersection of DNA and RNA virus-sensing networks. PLoS Pathog, 14, e1007148.

    44. Rong, Y., Zhang, S., Nandi, N., Wu, Z., Li, L., Liu, Y., Wei, Y., Zhao, Y., Yuan, W., Zhou, C., Xiao, G., Levine, B., Yan, N., Mou, S., Deng, L., Tang, Z., Liu, X., Kramer, H., Zhong, Q. 2022. STING controls energy stress-induced autophagy and energy metabolism via STX17. J Cell Biol 221, e202202060.

    45. Saavedra, F., Díaz, F. E., Retamal-Díaz, A., Covián, C., González, P. A., Kalergis, A. M. 2021. Immune response during hantavirus diseases:implications for immunotherapies and vaccine design. Immunology, 163, 262-277.

    46. Schoggins, J. W., Macduff, D. A., Imanaka, N., Gainey, M. D., Shrestha, B., Eitson, J. L., Mar, K. B., Richardson, R. B., Ratushny, A. V., Litvak, V., Dabelic, R., Manicassamy, B., Aitchison, J. D., Aderem, A., Elliott, R. M., García-Sastre, A., Racaniello, V., Snijder, E. J., Yokoyama, W. M., Diamond, M. S., Virgin, H. W., Rice, C. M. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 505, 691-695.

    47. Shang, G., Zhang, C., Chen, Z. J., Bai, X. C., Zhang, X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature, 567, 389-393.

    48. Singh, R. S., Vidhyasagar, V., Yang, S., Arna, A. B., Yadav, M., Aggarwal, A., Aguilera, A. N., Shinriki, S., Bhanumathy, K. K., Pandey, K., Xu, A., Rapin, N., Bosch, M., Decoteau, J., Xiang, J., Vizeacoumar, F. J., Zhou, Y., Misra, V., Matsui, H., Ross, S. R., Wu, Y. 2022. DDX41 is required for cGAS-STING activation against DNA virus infection. Cell Rep, 39, 110856.

    49. Slavik, K. M., Morehouse, B. R., Ragucci, A. E., Zhou, W., Ai, X., Chen, Y., Li, L., Wei, Z., Bähre, H., König, M., Seifert, R., Lee, A. S. Y., Cai, H., Imler, J. L., Kranzusch, P. J. 2021. cGAS-like receptors sense RNA and control 3'2'-cGAMP signalling in Drosophila. Nature, 597, 109-113.

    50. Sun, L., Wu, J., Du, F., Chen, X., Chen, Z. J. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339, 786-791.

    51. Takeda, K., Akira, S. 2005. Toll-like receptors in innate immunity. Int Immunol, 17, 1-14.

    52. Tanaka, Y., Chen, Z. J. 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal, 5, ra20.

    53. Triantafilou, M., Ramanjulu, J., Booty, L. M., Jimenez-Duran, G., Keles, H., Saunders, K., Nevins, N., Koppe, E., Modis, L. K., Pesiridis, G. S., Bertin, J., Triantafilou, K. 2022. Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication. Nat Commun, 13, 1406.

    54. Wang, H., Vaheri, A., Weber, F., Plyusnin, A. 2011. Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5' termini of their genomic RNAs are monophosphorylated. J Gen Virol, 92, 1199-1204.

    55. Wang, K., Ma, H., Liu, H., Ye, W., Li, Z., Cheng, L., Zhang, L., Lei, Y., Shen, L., Zhang, F. 2019. The Glycoprotein and Nucleocapsid Protein of Hantaviruses Manipulate Autophagy Flux to Restrain Host Innate Immune Responses. Cell Rep, 27, 2075-2091.e5.

    56. Webb, L. G., Fernandez-Sesma, A. 2022. RNA viruses and the cGAS-STING pathway:reframing our understanding of innate immune sensing. Curr Opin Virol, 53, 101206.

    57. Woodward, J. J., Iavarone, A. T., Portnoy, D. A. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science, 328, 1703-1705.

    58. Yamashiro, L. H., Wilson, S. C., Morrison, H. M., Karalis, V., Chung, J. J., Chen, K. J., Bateup, H. S., Szpara, M. L., Lee, A. Y., Cox, J. S., Vance, R. E. 2020. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat Commun, 11, 3382.

    59. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., Fujita, T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5, 730-737.

    60. Zevini, A., Olagnier, D., Hiscott, J. 2017. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Trends Immunol, 38, 194-205.

    61. Zhang, C., Shang, G., Gui, X., Zhang, X., Bai, X. C., Chen, Z. J. 2019. Structural basis of STING binding with and phosphorylation by TBK1. Nature, 567, 394-398.

    62. Zhang, R., Kang, R., Tang, D. 2021. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther, 6, 208.

    63. Zhang, R., Qin, X., Yang, Y., Zhu, X., Zhao, S., Zhang, Z., Su, Q., Zhao, Z., Yin, X., Meng, X., Zhang, Z., Li, Y. 2022. STING1 is essential for an RNA-virus triggered autophagy. Autophagy, 18, 816-828.

    64. Zhang, X., Bai, X. C., Chen, Z. J. 2020. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 53, 43-53.

    65. Zhang, Y., Liu, B., Ma, Y., Yi, J., Zhang, C., Zhang, Y., Xu, Z., Wang, J., Yang, K., Yang, A., Zhuang, R., Jin, B. 2014. Hantaan virus infection induces CXCL10 expression through TLR3, RIG-I, and MDA-5 pathways correlated with the disease severity. Mediators Inflamm, 2014, 697837.

  • 加载中

Article Metrics

Article views(1674) PDF downloads(18) Cited by()

Related
Proportional views

    STING strengthens host anti-hantaviral immunity through an interferon-independent pathway

      Corresponding author: Lixin Shen, shenlx@nwu.edu.cn
      Corresponding author: Fanglin Zhang, flzhang@fmmu.edu.cn
      Corresponding author: Hongwei Ma, mahongwei0720@sina.com
    • a. College of Life Sciences, Northwest University, Xi'an 710069, China;
    • b. Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China;
    • c. College of Medicine, Yan'an University, Yan'an 716000, China;
    • d. Department of Anesthesiology & Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China;
    • e. Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China

    Abstract: Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.

    Reference (65) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return