Guo-hui Chang, Bao-jun Luo, Pin Lu, Lei Lin, Xiao-yan Wu, Jing Li, Yi Hu and Qing-yu Zhu. Construction and Genetic Analysis of Murine Hepatitis Virus Strain A59 Nsp16 Temperature Sensitive Mutant and the Revertant Virus[J]. Virologica Sinica, 2011, 26(1): 19-29. doi: 10.1007/s12250-011-3145-x
Citation: Guo-hui Chang, Bao-jun Luo, Pin Lu, Lei Lin, Xiao-yan Wu, Jing Li, Yi Hu, Qing-yu Zhu. Construction and Genetic Analysis of Murine Hepatitis Virus Strain A59 Nsp16 Temperature Sensitive Mutant and the Revertant Virus .VIROLOGICA SINICA, 2011, 26(1) : 19-29.  http://dx.doi.org/10.1007/s12250-011-3145-x

鼠肝炎病毒株MHV-A59温度敏感突变体及其回复突变体的构建及遗传分析

  • 冠状病毒是一种重要的病原体,主要引起人和畜类感染。SARS冠状病毒的出现再次引起了人们对冠状病毒复制及致病机理研究的关注。鼠肝炎病毒株MHV-A59是一个用来研究冠状病毒结构蛋白功能及病毒复制的良好模型系统。本研究利用以痘苗病毒为载体的反向遗传学系统,通过定点突变和多轮重组筛选,构建了野生型MHV-A59的温度敏感突变株Wu”-ts18(cd),该突变株对MHV-A59非结构蛋白16(Nsp16)的第12位氨基酸的三个碱基发生了突变,导致该位点氨基酸发生与报道的Wu”-ts18温度敏感突变株相同的氨基酸突变,但降低了在该位点产生回复突变的可能性。在不同培养温度的病毒蚀斑和复制分析结果表明,所构建的温度敏感突变体Wu”-ts18(cd)与报道的Wu”-ts18具有相同的复制特性和温度敏感表型。通过在非容许温度培养Wu”-ts18(cd),迫使其产生在其它位点发生突变的回复突变体。对多株Wu”-ts18(cd)的回复突变体序列分析结果表明,多数回复突变体在Nsp16的43位氨基酸发生了单个氨基酸位点的突变, 在Nsp16的76位和130位的单个氨基酸突变也可使温度敏感突变株Wu”-ts18(cd)回复为野生型。回复突变体R8和R9在非容许温度39.5°C可形成大小不同的蚀斑,全序列测定结果表明Nsp13的115位氨基酸差异影响了蚀斑的大小。本研究建立了利用冠状病毒温度敏感突变体及其回复突变体研究非结构蛋白功能方法,并确定了影响Nsp16蛋白功能的几个重要氨基酸位点,有利于进一步了解冠状病毒Nsp16蛋白在病毒复制过程中的功能。

Construction and Genetic Analysis of Murine Hepatitis Virus Strain A59 Nsp16 Temperature Sensitive Mutant and the Revertant Virus

  • Corresponding author: Guo-hui Chang, changguohui999@yahoo.com.cn
  • Received Date: 23 April 2010
    Accepted Date: 19 November 2010

    Fund Project: Research Grants from State Key Laboratory of Pathogen and Biosecurity SKLPBS0918

  • Coronaviruses (CoVs) are generally associated with respiratory and enteric infections and have long been recognized as important pathogens of livestock and companion animals. Mouse hepatitis virus (MHV) is a widely studied model system for Coronavirus replication and pathogenesis. In this study, we created a MHV-A59 temperature sensitive (ts) mutant Wu”-ts18(cd) using the recombinant vaccinia reverse genetics system. Virus replication assay in 17C1-1 cells showed the plaque phenotype and replication characterization of constructed Wu”-ts18(cd) were indistinguishable from the reported ts mutant Wu”-ts18. Then we cultured the ts mutant Wu”-ts18(cd) at non-permissive temperature 39.5°C, which “forced” the ts recombinant virus to use second-site mutation to revert from a ts to a non-ts phenotype. Sequence analysis showed most of the revertants had the same single amino acid mutation at Nsp16 position 43. The single amino acid mutation at Nsp16 position 76 or position 130 could also revert the ts mutant Wu”-ts18 (cd) to non-ts phenotype, an additional independent mutation in Nsp13 position 115 played an important role on plaque size. The results provided us with genetic information on the functional determinants of Nsp16. This allowed us to build up a more reasonable model of CoVs replication-transcription complex.

  • 加载中
    1. Ahola T, Laakkonen P, Vihinen H, et al. 1997. Critical residues of Semliki Forest Virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol, 71: 392-397.

    2. Almazan F, Dediego M L, Galán C, et al. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol, 80: 10900-10906.
        doi: 10.1128/JVI.00385-06

    3. Benarroch D, Selisko B, Locatelli G A, et al. 2004. The RNA helicase, nucleotide 5'-triphosphatase and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+dependent and require a functional Walker B motif in the helicase catalytic core. Virology, 328: 208-218.
        doi: 10.1016/j.virol.2004.07.004

    4. Brian D A, Baric R S. 2005. Coronavirus genome structure and replication. Curr Top Microbiol Immunol, 287: 1-30.

    5. Brockway S M, Denison M R. 2005. Mutagenesis of the murine hepatitis virus nsp1-coding region identifies residues important for protein processing, viral RNA synthesis, and viral replication. Virology, 340: 209-223.
        doi: 10.1016/j.virol.2005.06.035

    6. Bujnicki J M, Rychlewski L. 2002. In silico identification, structure prediction and phylogenetic analysis of the 2'-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses. Protein Eng, 15: 101-108.
        doi: 10.1093/protein/15.2.101

    7. Casais R, Thiel V, Siddell S G, et al. 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol, 75: 12359-12369.
        doi: 10.1128/JVI.75.24.12359-12369.2001

    8. Coley S E, Lavi E, Sawicki S G, et al. 2005. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol, 79: 3097-3106.
        doi: 10.1128/JVI.79.5.3097-3106.2005

    9. Decroly E, Imbert I, Coutard B, et al. 2008. Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (Nucleoside-2'O)-methyltransferase activity. J Virol, 82: 8071-8084.
        doi: 10.1128/JVI.00407-08

    10. Drosten C, Gunther S, Preiser W, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348: 1967-1976.
        doi: 10.1056/NEJMoa030747

    11. Eckerle L D, Lu X, Sperry S M, L, et al. 2007. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants. J Virol, 81: 12135-12144.
        doi: 10.1128/JVI.01296-07

    12. Egloff M P, Benarroch D, Selisko B, et al. 2002. An RNA cap (nucleoside-2'O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J, 21: 2757-2768.
        doi: 10.1093/emboj/21.11.2757

    13. Egloff M P, Decroly E, Malet H, et al. 2007. Structural and functional analysis of methylation and 5' RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372: 723-736.
        doi: 10.1016/j.jmb.2007.07.005

    14. Egloff M P, Ferron F, Campanacci V, et al. 2004. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci USA, 101: 3792-3796.
        doi: 10.1073/pnas.0307877101

    15. Enjuanes L, Sola I, Alonso S, et al. 2005. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol, 287: 161-197.

    16. Ginalski K, Godzi k A, Rychlewski L. 2006. Novel SARS unique AdoMet-dependent methyltransferase. Cell Cycle, 5: 2414-2416.
        doi: 10.4161/cc.5.20.3361

    17. Guarino L A, Bhardwaj K, Dong W, et al. 2005. Mutational analysis of the SARS virus Nsp15 endoribonuclease, identification of residues affecting hexamer formation. J Mol Biol, 353: 106-1117.

    18. Harcourt B H, Jukneliene D, Kanjanahaluethai A, et al. 2004. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol, 78: 13600-13612.
        doi: 10.1128/JVI.78.24.13600-13612.2004

    19. Ivanov K A, Ziebuhr J. 2004. Human coronavirus 229E nonstructural protein 13, characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities. J Virol, 78: 7833-7838.
        doi: 10.1128/JVI.78.14.7833-7838.2004

    20. Roth-Cross J K, Stokes H, Chang G, et al. 2009. Organ specific attenuation of Murine Hepatitis Virus Strain A59 by replacement of catalytic residues in the putative viral cyclic phosphodiesterase ns2. J Virol, 83: 3743-53.
        doi: 10.1128/JVI.02203-08

    21. Kozbial P Z, Mushegian A R. 2005. Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol, 5: 19.
        doi: 10.1186/1472-6807-5-19

    22. Ksiazek T G, Erdman D, Goldsmith C S, et al. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348: 1953-1966.
        doi: 10.1056/NEJMoa030781

    23. Martin J L, McMillan F M. 2002. SAM (dependent) Ⅰ AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol, 12: 783-793.
        doi: 10.1016/S0959-440X(02)00391-3

    24. Masters P S. 2006. The molecular biology of coronaviruses. Adv Virus Res, 66: 193-292.
        doi: 10.1016/S0065-3527(06)66005-3

    25. Masters P S, Rottier P J M. 2005. Coronavirus reverse genetics by targeted RNA recombination. Curr Top Microbiol Immunol, 287: 133-159.

    26. Putics A, Filipowicz W, Hall J, et al. 2005. ADP-ribose-1-monophosphatase, a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol, 79: 12721-12731.
        doi: 10.1128/JVI.79.20.12721-12731.2005

    27. Ray D, Shah A, Tilgner M, et al. 2006. West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol 80: 8362-8370.
        doi: 10.1128/JVI.00814-06

    28. Sawicki S G, Sawicki D L, Siddell S G. 2007. A contemporary view of coronavirus transcription. J Virol, 81: 20-29.
        doi: 10.1128/JVI.01358-06

    29. Sawicki S G, Sawicki D L, Younker D, et al. 2005. Functional and genetic analysis of coronavirus replicase transcriptase proteins. PLoS Pathogens, 1: e39.
        doi: 10.1371/journal.ppat.0010039

    30. Sawicki D, Wang T, Sawicki S. 2001. The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol, 82: 385-396.
        doi: 10.1099/0022-1317-82-2-385

    31. Schelle B, Karl N, Ludewig B, et al. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol, 79: 6620-6630.
        doi: 10.1128/JVI.79.11.6620-6630.2005

    32. Siddell S G, Ziebuhr J, Snijder E J. 2005. Coronaviruses, toroviruses, and arteriviruses. In: Virology (Mahy B W J and ter Meulen V ed. ), Hodder Arnold, London, United Kingdom: Topley & Wilson's microbiology and microbial infections. p823-856.

    33. Sturman L S, Eastwood C, Frana M F, et al. 1987. Temperature-sensitive mutants of MHV-A59. Adv Exp Med Biol, 218:159-168
        doi: 10.1007/978-1-4684-1280-2

    34. Thiel V. 2007. Reverse genetic analysis of coronavirus replication. In: Coronaviruses: molecular and cellular biology (Thiel V. ed). Norfolk, United Kingdom: Caister Academic Press, p109-132.

    35. Thiel V, Herold J, Schelle B, et al. 2001. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome. J Gen Virol, 82: 1273-1281.
        doi: 10.1099/0022-1317-82-6-1273

    36. Thiel V, Siddell S G. 2005. Reverse genetics of coronaviruses using vaccinia virus vectors. Curr Top Microbiol Immunol, 287: 199-227.

    37. Von Grotthuss M, Wyrwicz L S, Rychlewski L. 2003. mRNA cap-1-methyltransferase in the SARS genome. Cell, 113: 701-702.
        doi: 10.1016/S0092-8674(03)00424-0

  • 加载中

Figures(3) / Tables(2)

Article Metrics

Article views(4509) PDF downloads(14) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Construction and Genetic Analysis of Murine Hepatitis Virus Strain A59 Nsp16 Temperature Sensitive Mutant and the Revertant Virus

      Corresponding author: Guo-hui Chang, changguohui999@yahoo.com.cn
    • 1. State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
    • 2. Changchun Changsheng Life Sciences Limited, Changchun 130103, China
    Fund Project:  Research Grants from State Key Laboratory of Pathogen and Biosecurity SKLPBS0918

    Abstract: Coronaviruses (CoVs) are generally associated with respiratory and enteric infections and have long been recognized as important pathogens of livestock and companion animals. Mouse hepatitis virus (MHV) is a widely studied model system for Coronavirus replication and pathogenesis. In this study, we created a MHV-A59 temperature sensitive (ts) mutant Wu”-ts18(cd) using the recombinant vaccinia reverse genetics system. Virus replication assay in 17C1-1 cells showed the plaque phenotype and replication characterization of constructed Wu”-ts18(cd) were indistinguishable from the reported ts mutant Wu”-ts18. Then we cultured the ts mutant Wu”-ts18(cd) at non-permissive temperature 39.5°C, which “forced” the ts recombinant virus to use second-site mutation to revert from a ts to a non-ts phenotype. Sequence analysis showed most of the revertants had the same single amino acid mutation at Nsp16 position 43. The single amino acid mutation at Nsp16 position 76 or position 130 could also revert the ts mutant Wu”-ts18 (cd) to non-ts phenotype, an additional independent mutation in Nsp13 position 115 played an important role on plaque size. The results provided us with genetic information on the functional determinants of Nsp16. This allowed us to build up a more reasonable model of CoVs replication-transcription complex.