Zhe Ren, Shen Li, Qiao-li Wang, Yang-fei Xiang, Yun-xia Cui, Yi-fei Wang, Ren-bin Qi, Da-xiang Lu, Shu-min Zhang and Pei-zhuo Zhang. Effect of siRNAs on HSV-1 Plaque Formation and Relative Expression Levels of RR mRNA[J]. Virologica Sinica, 2011, 26(1): 40-46. doi: 10.1007/s12250-011-3162-9
Citation: Zhe Ren, Shen Li, Qiao-li Wang, Yang-fei Xiang, Yun-xia Cui, Yi-fei Wang, Ren-bin Qi, Da-xiang Lu, Shu-min Zhang, Pei-zhuo Zhang. Effect of siRNAs on HSV-1 Plaque Formation and Relative Expression Levels of RR mRNA .VIROLOGICA SINICA, 2011, 26(1) : 40-46.  http://dx.doi.org/10.1007/s12250-011-3162-9

siRNA对HSV-1空斑形成及RR mRNA相对表达水平的影响

  • RNA 干扰是一种由siRNA 介导的、转录后mRNA 水平关闭相应基因表达的序列特异性基因沉默机制。HSV-1病毒脱氧核糖核苷酸还原酶(RR)分别由UL39和UL40基因编码的大、小两个亚基组成,本研究应用化学合成的靶向UL39和UL40基因的siRNAs,高效、特异地沉默了RR mRNA的表达,抑制了HSV-1病毒的复制,为RNA干扰作为抑制HSV-1病毒复制的基因工具提供了一种新的可能。

Effect of siRNAs on HSV-1 Plaque Formation and Relative Expression Levels of RR mRNA

  • Corresponding author: Yi-fei Wang, twang-yf@163.com Da-xiang Lu, ldx@jnu.edu.cn Shu-min Zhang, zhangsmo@hotmail.com
  • Received Date: 03 August 2010
    Accepted Date: 30 September 2010

    Fund Project: Chinese Academy of Sciences O807E21211The Nation “863” Program of China 2006AA02A226The Joint Funds of National Science Foundation of China U0632010Chinese Academy of Sciences O807B11211

  • RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication

  • 加载中
    1. Andino R. 2003. RNAi puts a lid on virus replication. Nat Biotechnol, 21: 629-630.
        doi: 10.1038/nbt0603-629

    2. Bhuyan P K, Kariko K, Capodici J. 2004. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes. J Virol, 78: 10276-10281.
        doi: 10.1128/JVI.78.19.10276-10281.2004

    3. Brandt C R, Kintner R L, Pumfrey A M, et al. 1991. The herpes simplex virus ribonucleotide reductase is required for ocular virulence. J Gen Virol, 72: 2043-2049.
        doi: 10.1099/0022-1317-72-9-2043

    4. Cameron J M, Mcdougall I, Marsden H S, et al. 1988. Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. J Gen Virol, 69: 2607-2612.
        doi: 10.1099/0022-1317-69-10-2607

    5. Cory J G. 1988. Ribonucleotide reductase as a chemotherapeutic target. Adv Enzyme Regul, 27: 437-455.
        doi: 10.1016/0065-2571(88)90030-1

    6. David J G, Sandra K W. 1988. Herpes Simplex Virus Type 1-Induced Ribonucleotide Reductase Activity Is Dispensable for Virus Growth and DNA Synthesis: Isolation and Characterization of an ICP6 lacZ Insertion Mutant. J Virol, 62: 196-205.

    7. Elbashir S M, Harborth J, Weber K, et al. 2002. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26: 199-213.
        doi: 10.1016/S1046-2023(02)00023-3

    8. Frame M C, Marsden H S, Dutia B M. 1985. The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). J Gen Virol, 66: 1581-1587.
        doi: 10.1099/0022-1317-66-7-1581

    9. Honess R.W, Roizman B. 1973. Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and non-structural herpes virus polypeptides in infected cells. J Virol, 12: 1347-1365.

    10. Honess R W, Roizman B. 1974. Regulation of herpes virus macromolecular synthesis.Ⅰ. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 14:8-19.

    11. Holen T, Amarzguioui M, Wiiger M T, et al. 2002. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 30: 1757-1766.
        doi: 10.1093/nar/30.8.1757

    12. Idowu A D, Fraser-Smith E B, Poffenberger K L, et al. 1992. Deletion of the herpes simplex virus type 1 ribonucleotide reductase gene alters virulence and latency in vivo. Antiviral Res, 17: 145-156.

    13. Ingemarson R, Lankinen H. 1987. The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type alpha 2 beta 2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Virology, 156: 417-422.
        doi: 10.1016/0042-6822(87)90422-3

    14. Jacobson J G, Leib A D, Goldstein D J, et al. 1989. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology, 173: 276-283.
        doi: 10.1016/0042-6822(89)90244-4

    15. Jiang M, Milner J. 2002. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene, 21: 6041-6048.
        doi: 10.1038/sj.onc.1205878

    16. Kawasaki H, Suyama E, Iyo M, et al 2003. siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucl Acids Res, 31: 981-987.
        doi: 10.1093/nar/gkg184

    17. Khvorova A, Reynolds A, Jayasena S D. 2003. Functional siRNAs and rniRNAs exhibit strand bias. Cell, 115: 209-216.
        doi: 10.1016/S0092-8674(03)00801-8

    18. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCT). Methods, 25: 402-408.
        doi: 10.1006/meth.2001.1262

    19. Luo K Q, Chang D C. 2004. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun, 318: 303-310.
        doi: 10.1016/j.bbrc.2004.04.027

    20. Mcgeoch D J, Dalrymple M A, Davison A J, et al. 1988. The complete DNA sequences of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol, 69: 1531-1574.
        doi: 10.1099/0022-1317-69-7-1531

    21. Preston V G, Coates J A, Rixon F J. 1983. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol, 45: 1056-1064.

    22. Preston V G, Palfreyman J W, Dutia B M. 1984. Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. J Gen Virol, 65: 1457-1466
        doi: 10.1099/0022-1317-65-9-1457

    23. Pu Y, Liu L D, Ma S H. 2005. Analysis of siRNA interfering in the alpha 22 immediate early gene of HSV-1. Virol Sin, 20: 221-224.

    24. Ren Z, Zhang M Y, Kitazato K, et al. 2008. Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA. Arch Virol. 153: 1401-1406.
        doi: 10.1007/s00705-008-0110-1

    25. Ren Z, Zhang C H, Wang L J, et al. 2010. In Vitro Anti-viral Activity of the Total Alkaloids from Tripterygium Hypoglaucum against Herpes Simplex Virus Type 1. Virol Sin, 25: 107-114.
        doi: 10.1007/s12250-010-3092-6

    26. Robins M J. 1999. Mechanism-based inhibition of ribonucleotide reductases: new mechanistic considerations and promising biological applications. Nucleosides Nucleotides, 18: 779-793.
        doi: 10.1080/15257779908041565

    27. Schubert S, Grunweller A, Erdmann V A, et al 2005. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Bio, 348: 883-893.
        doi: 10.1016/j.jmb.2005.03.011

    28. Song E, Lee S K, Wang J, et al. 2003. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med, 9: 347-351.
        doi: 10.1038/nm828

    29. Szekeres T, Fritzer-Szekeres M, Elford H L. 1997. The enzyme ribonucleotide reductase: target for antitumor and anti-HIV therapy. Crit Rev Clin Lab Sci, 34: 503-528.
        doi: 10.3109/10408369709006424

    30. Thelander L, Reichard P. 1979. Reduction of ribonucleotides. Annu Rev Biochem, 48:133-158.
        doi: 10.1146/annurev.bi.48.070179.001025

    31. Vickers T A, Koo S, Bennett C F, et al 2003. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem, 278: 7108-7118.
        doi: 10.1074/jbc.M210326200

    32. Yamada Y, Kimura H, Morishima T, et al. 1991. The pathogenicity of ribonucleotide reductase-null mutants of herpes simplex virus type 1 in mice. J Infect Dis, 164: 1091-1097.
        doi: 10.1093/infdis/164.6.1091

    33. Zhu Q C, Ren Z, Zhang C L et al. 2007. Silencing HSV-1 gD expression in cultured cells by RNA interference. Chin J Virol, 23: 22-27.

  • 加载中

Figures(2) / Tables(3)

Article Metrics

Article views(3369) PDF downloads(16) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Effect of siRNAs on HSV-1 Plaque Formation and Relative Expression Levels of RR mRNA

      Corresponding author: Yi-fei Wang, twang-yf@163.com
      Corresponding author: Da-xiang Lu, ldx@jnu.edu.cn
      Corresponding author: Shu-min Zhang, zhangsmo@hotmail.com
    • 1. Biomedicine research and development center of Jinan University, Guangdong, Guangzhou, 510632, China
    • 2. Medical College of Jinan University, Guangdong, Guangzhou, 510632, China
    • 3. National Engineering Research Center of Genetic Medicine, Guangdong, Guangzhou, 510632, China
    • 4. National Institute for the Control of Pharmaceutical and Biological Products, Beijing, 100050, China
    • 5. Shanghai GenePharma Co., Ltd, Shanghai, 201203, China
    Fund Project:  Chinese Academy of Sciences O807E21211The Nation “863” Program of China 2006AA02A226The Joint Funds of National Science Foundation of China U0632010Chinese Academy of Sciences O807B11211

    Abstract: RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication