Ayslan Castro Brant, Vladimir Majerciak, Miguel Angelo Martins Moreira and Zhi-Ming Zheng. HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein[J]. Virologica Sinica, 2019, 34(2): 211-221. doi: 10.1007/s12250-019-00098-0
Citation: Ayslan Castro Brant, Vladimir Majerciak, Miguel Angelo Martins Moreira, Zhi-Ming Zheng. HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein .VIROLOGICA SINICA, 2019, 34(2) : 211-221.  http://dx.doi.org/10.1007/s12250-019-00098-0

HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein

  • 收稿日期: 2018-12-17
    录用日期: 2019-02-21
    出版日期: 2019-04-03

HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein

  • Corresponding author: Zhi-Ming Zheng, zhengt@exchange.nih.gov
  • Received Date: 17 December 2018
    Accepted Date: 21 February 2019
    Published Date: 03 April 2019
  • Human papillomavirus 18 (HPV18) E6 and E7 oncogenes are transcribed as a single bicistronic E6E7 pre-mRNA. The E6 ORF region in the bicistronic E6E7 pre-mRNA contains an intron. Splicing of this intron disrupts the E6 ORF integrity and produces a spliced E6*I RNA for efficient E7 translation. Here we report that the E6 intron has two overlapped branch point sequences (BPS) upstream of its 3' splice site, with an identical heptamer AACUAAC, for E6*I splicing. One heptamer has a branch site adenosine (underlined) at nt 384 and the other at nt 388. E6*I splicing efficiency correlates to the expression level of E6 and E7 proteins and depends on the selection of which branch site. In general, E6*I splicing prefers the 3'ss-proximal branch site at nt 388 over the distal branch site at nt 384. Inactivation of the nt 388 branch site was found to activate a cryptic acceptor site at nt 636 for aberrant RNA splicing. Together, these data suggest that HPV18 modulates its production ratio of E6 and E7 proteins by alternative selection of the two mapped branch sites for the E6*I splicing, which could be beneficial in its productive or oncogenic infection according to the host cell environment.

  • 加载中
    1. Agrawal AA, Salsi E, Chatrikhi R, Henderson S, Jenkins JL, Green MR, Ermolenko DN, Kielkopf CL. 2016. An extended U2AF(65)-RNA-binding domain recognizes the 3′ splice site signal. Nat Commun, 7:10950
        doi: 10.1038/ncomms10950

    2. Ajiro M, Zheng ZM. 2014. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 3:e63

    3. Ajiro M, Zheng ZM. 2015a. E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. mBio 6:e02014-e02068

    4. Ajiro M, Zheng ZM. 2015b. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing. Cell Biosci, 5:70
        doi: 10.1186/s13578-015-0061-7

    5. Ajiro M, Jia R, Zhang L, Liu X, Zheng ZM. 2012. Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression. PLoS ONE 7:e46412
        doi: 10.1371/journal.pone.0046412

    6. Ajiro M, Jia R, Yang Y, Zhu J, Zheng ZM. 2016a. A genome landscape of SRSF3-regulated splicing events and gene expression in human osteosarcoma U2OS cells. Nucleic Acids Res, 44:1854-1870
        doi: 10.1093/nar/gkv1500

    7. Ajiro M, Tang S, Doorbar J, Zheng ZM. 2016b. Serine/Arginine-rich splicing factor 3 and heterogeneous nuclear ribonucleoprotein A1 regulate alternative RNA splicing and gene expression of human papillomavirus 18 through two functionally distinguishable cis elements. J Virol, 90:9138-9152
        doi: 10.1128/JVI.00965-16

    8. Berglund JA, Abovich N, Rosbash M. 1998. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev, 12:858-867
        doi: 10.1101/gad.12.6.858

    9. Conklin JF, Goldman A, Lopez AJ. 2005. Stabilization and analysis of intron lariats in vivo. Methods San Diego Calif, 37:368-375
        doi: 10.1016/j.ymeth.2005.08.002

    10. de Villiers E-M. 2013. Cross-roads in the classification of papillomaviruses. Virology, 445:2-10
        doi: 10.1016/j.virol.2013.04.023

    11. Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. 2009. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67
        doi: 10.1093/nar/gkp215

    12. Fay J, Kelehan P, Lambkin H, Schwartz S. 2009. Increased expression of cellular RNA-binding proteins in HPV-induced neoplasia and cervical cancer. J Med Virol, 81:897-907
        doi: 10.1002/jmv.v81:5

    13. Gao K, Masuda A, Matsuura T, Ohno K. 2008. Human branch point consensus sequence is yUnAy. Nucleic Acids Res, 36:2257-2267
        doi: 10.1093/nar/gkn073

    14. Kol G, Lev-Maor G, Ast G. 2005. Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet, 14:1559-1568
        doi: 10.1093/hmg/ddi164

    15. Lee Y, Rio DC. 2015. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem, 84:291-323
        doi: 10.1146/annurev-biochem-060614-034316

    16. Mercer TR, Clark MB, Andersen SB, Brunck ME, Haerty W, Crawford J, Taft RJ, Nielsen LK, Dinger ME, Mattick JS. 2015. Genome-wide discovery of human splicing branchpoints. Genome Res, 25:290-303
        doi: 10.1101/gr.182899.114

    17. Mole S, McFarlane M, Chuen-Im T, Milligan SG, Millan D, Graham SV. 2009. RNA splicing factors regulated by HPV16 during cervical tumour progression. J Pathol, 219:383-391
        doi: 10.1002/path.v219:3

    18. Pineda JMB, Bradley RK. 2018. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev, 32:577-591
        doi: 10.1101/gad.312058.118

    19. Ranjeva SL, Baskerville EB, Dukic V, Villa LL, Lazcano-Ponce E, Giuliano AR, Dwyer G, Cobey S. 2017. Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc Natl Acad Sci U S A, 114:13573-13578
        doi: 10.1073/pnas.1714712114

    20. Shi Y. 2017. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol, 18:655-670
        doi: 10.1038/nrm.2017.86

    21. Sickmier EA, Frato KE, Shen H, Paranawithana SR, Green MR, Kielkopf CL. 2006. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol Cell, 23:49-59
        doi: 10.1016/j.molcel.2006.05.025

    22. Sohail M, Xie J. 2015. Diverse regulation of 3′ splice site usage. Cell Mol Life Sci, 72:4771-4793
        doi: 10.1007/s00018-015-2037-5

    23. Sutandy FXR, Ebersberger S, Huang L, Busch A, Bach M, Kang HS, Fallmann J, Maticzka D, Backofen R, Stadler PF, Zarnack K, Sattler M, Legewie S, König J. 2018. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors. Genome Res, 28:699-713
        doi: 10.1101/gr.229757.117

    24. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. 2006. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34:e63
        doi: 10.1093/nar/gkl151

    25. Taggart AJ, DeSimone AM, Shih JS, Filloux ME, Fairbrother WG. 2012. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol, 19:719-721
        doi: 10.1038/nsmb.2327

    26. Tang S, Tao M, McCoy JP, Zheng ZM. 2006. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol, 80:4249-4263
        doi: 10.1128/JVI.80.9.4249-4263.2006

    27. Tavanez JP, Madl T, Kooshapur H, Sattler M, Valcárcel J. 2012. hnRNP A1 proofreads 3′ splice site recognition by U2AF. Mol Cell, 45:314-329
        doi: 10.1016/j.molcel.2011.11.033

    28. Vogel J, Hess WR, Börner T. 1997. Precise branch point mapping and quantification of splicing intermediates. Nucleic Acids Res, 25:2030-2031
        doi: 10.1093/nar/25.10.2030

    29. Vousden KH. 1994. Interactions between papillomavirus proteins and tumor suppressor gene products. Adv Cancer Res, 64:1-24
        doi: 10.1016/S0065-230X(08)60833-7

    30. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189:12-19
        doi: 10.1002/(ISSN)1096-9896

    31. Wang X, Meyers C, Wang HK, Chow LT, Zheng ZM. 2011. Construction of a Full Transcription Map of Human Papillomavirus Type 18 during Productive Viral Infection. J Virol, 85:8080-8092
        doi: 10.1128/JVI.00670-11

    32. Wang X, Liu H, Wang HK, Meyers C, Chow L, Zheng ZM. 2016. HPV18 DNA replication inactivates the early promoter P55 activity and prevents viral E6 expression. Virol Sin, 31:437-440
        doi: 10.1007/s12250-016-3887-1

    33. Will CL, Lührmann R. 2011. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 3:a003707

    34. Zamore PD, Patton JG, Green MR. 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature, 355:609-614
        doi: 10.1038/355609a0

    35. Zheng ZM. 2004. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci, 11:278-294
        doi: 10.1007/BF02254432

    36. Zheng ZM. 2010. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci, 6:730-755

    37. Zheng ZM, Baker CC. 2000. Parameters that affect in vitro splicing of bovine papillomavirus type 1 late pre-mRNAs. J Virol Methods, 85:203-214
        doi: 10.1016/S0166-0934(99)00172-X

    38. Zheng ZM, Baker CC. 2006. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci, 11:2286-2302
        doi: 10.2741/1971

    39. Zheng ZM, Reid ES, Baker CC. 2000. Utilization of the bovine papillomavirus type 1 late-stage-specific nucleotide 3605 3′ splice site is modulated by a novel exonic bipartite regulator but not by an intronic purine-rich element. J Virol, 74:10612-10622
        doi: 10.1128/JVI.74.22.10612-10622.2000

    40. Zheng ZM, Tao M, Yamanegi K, Bodaghi S, Xiao W. 2004. Splicing of a cap-proximal human Papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5′ cap. J Mol Biol, 337:1091-1108
        doi: 10.1016/j.jmb.2004.02.023

    41. Zhuang YA, Goldstein AM, Weiner AM. 1989. UACUAAC is the preferred branch site for mammalian mRNA splicing. Proc Natl Acad Sci U S A, 86:2752-2756
        doi: 10.1073/pnas.86.8.2752

    42. Zur Hausen H. 2002. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342-350
        doi: 10.1038/nrc798

  • 加载中
  • 211 ESM.pdf

Figures(5) / Tables(1)

Article Metrics

Article views(6956) PDF downloads(32) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    HPV18 Utilizes Two Alternative Branch Sites for E6*I Splicing to Produce E7 Protein

      Corresponding author: Zhi-Ming Zheng, zhengt@exchange.nih.gov
    • 1. Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
    • 2. Genetics Post-Graduation Program, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
    • 3. Genetics Program, Nacional Cancer Institute, INCA, Rio de Janeiro 20231-050, Brazil

    Abstract: Human papillomavirus 18 (HPV18) E6 and E7 oncogenes are transcribed as a single bicistronic E6E7 pre-mRNA. The E6 ORF region in the bicistronic E6E7 pre-mRNA contains an intron. Splicing of this intron disrupts the E6 ORF integrity and produces a spliced E6*I RNA for efficient E7 translation. Here we report that the E6 intron has two overlapped branch point sequences (BPS) upstream of its 3' splice site, with an identical heptamer AACUAAC, for E6*I splicing. One heptamer has a branch site adenosine (underlined) at nt 384 and the other at nt 388. E6*I splicing efficiency correlates to the expression level of E6 and E7 proteins and depends on the selection of which branch site. In general, E6*I splicing prefers the 3'ss-proximal branch site at nt 388 over the distal branch site at nt 384. Inactivation of the nt 388 branch site was found to activate a cryptic acceptor site at nt 636 for aberrant RNA splicing. Together, these data suggest that HPV18 modulates its production ratio of E6 and E7 proteins by alternative selection of the two mapped branch sites for the E6*I splicing, which could be beneficial in its productive or oncogenic infection according to the host cell environment.