Wei Chen, Pengmian Feng, Kewei Liu, Meng Wu and Hao Lin. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2[J]. Virologica Sinica, 2020, 35(3): 359-361. doi: 10.1007/s12250-020-00221-6
Citation: Wei Chen, Pengmian Feng, Kewei Liu, Meng Wu, Hao Lin. Computational Identification of Small Interfering RNA Targets in SARS-CoV-2 .VIROLOGICA SINICA, 2020, 35(3) : 359-361.  http://dx.doi.org/10.1007/s12250-020-00221-6

新型冠状病毒基因组中小干扰RNA靶位点预测

  • 通讯作者: 陈伟, greatchen@ncst.edu.cn, ORCID: http://orcid.org/0000-0002-6857-7696
    ; 林昊, hlin@uestc.edu.cn, ORCID: http://orcid.org/0000-0001-6265-2862
  • 收稿日期: 2020-03-06
    录用日期: 2020-04-03
    出版日期: 2020-04-15
  • 严重急性呼吸综合征冠状病毒2(SARS-CoV-2)已在世界范围爆发与流行, 但目前仍缺乏有效的疫苗及治疗药物。因此迫切需要寻找一种预防或治疗SARS-CoV-2的疫苗和药物。本研究采用生物信息学方法, 通过分析SARS-CoV-2基因组(MN908947)的二级结构, 获得了病毒基因组中长度在21~25nt可作为小干扰RNA的潜在靶点。进一步分析表明这些靶点在不同冠状病毒毒株中具有很强的保守性。希望本研究结果能够有助于治疗SARS-CoV-2的药物开发。

Computational Identification of Small Interfering RNA Targets in SARS-CoV-2

  • Corresponding author: Wei Chen, greatchen@ncst.edu.cn Hao Lin, hlin@uestc.edu.cn
  • ORCID: http://orcid.org/0000-0002-6857-7696; http://orcid.org/0000-0001-6265-2862
  • Received Date: 06 March 2020
    Accepted Date: 03 April 2020
    Published Date: 15 April 2020
  • With the epidemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) worldwide and in the absence of any effective vaccine, there is an urgent need to find a specific anti- SARS-CoV-2 agent. In this study, by analyzing the secondary structures of the SARS-CoV-2 genome (MN908947), several 21~25 base-long segments were obtained and selected as the potential targets of small interfering RNA duplexes. Moreover, it was also found that these targets are conserved among different strains. We hope the results will contribute to the pharmaceutical research and therapy of the SARS-CoV-2.

  • 加载中
    1. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) Rnastructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41:W471–W474
        doi: 10.1093/nar/gkt290

    2. Benvenuto D, Giovanetti M, Ciccozzi A, Spoto S, Angeletti S, Ciccozzi M (2020) The 2019-new coronavirus epidemic: evidence for virus evolution. J Med Virol 92:455–459
        doi: 10.1002/jmv.25688

    3. Bobbin ML, Rossi JJ (2016) Rna interference (rnai)-based therapeutics: delivering on the promise? Annu Rev Pharmacol Toxicol 56:103–122
        doi: 10.1146/annurev-pharmtox-010715-103633

    4. Chalk AM, Sonnhammer EL (2002) Computational antisense oligo prediction with a neural network model. Bioinformatics 18:1567–1575
        doi: 10.1093/bioinformatics/18.12.1567

    5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide rnas mediate rna interference in cultured mammalian cells. Nature 411:494–498
        doi: 10.1038/35078107

    6. Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J (2003) Rna interference of influenza virus production by directly targeting mrna for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA 100:2718–2723
        doi: 10.1073/pnas.0437841100

    7. Huang C, Li M, Chen C, Yao Q (2008) Small interfering rna therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 12:637–645
        doi: 10.1517/14728222.12.5.637

    8. Ji FM, Luo LF (2004) Prediction for target sites of small interfering RNA duplexes in sars coronavirus. Genome Biol 5:P6
        doi: 10.1186/gb-2004-5-2-p6

    9. Li T, Zhang Y, Fu L, Yu C, Li X, Li Y, Zhang X, Rong Z, Wang Y, Ning H, Liang R, Chen W, Babiuk LA, Chang Z (2005) Sirna targeting the leader sequence of sars-cov inhibits virus replication. Gene Ther 12:751–761
        doi: 10.1038/sj.gt.3302479

    10. Nguyen TM, Zhang Y, Pandolfi PP (2020) Virus against virus: a potential treatment for 2019-ncov (sars-cov-2) and other RNA viruses. Cell Res 30:189–190
        doi: 10.1038/s41422-020-0290-0

    11. Phan T (2020) Novel coronavirus: from discovery to clinical diagnostics. Infect Genet Evol 79:104211
        doi: 10.1016/j.meegid.2020.104211

    12. Shi Y, Yang DH, Xiong J, Jia J, Huang B, Jin YX (2005) Inhibition of genes expression of sars coronavirus by synthetic small interfering rnas. Cell Res 15:193–200
        doi: 10.1038/sj.cr.7290286

    13. Wilson JA, Jayasena S, Khvorova A, Sabatinos S, Rodrigue-Gervais IG, Arya S, Sarangi F, Harris-Brandts M, Beaulieu S, Richardson CD (2003) Rna interference blocks gene expression and RNA synthesis from hepatitis c replicons propagated in human liver cells. Proc Natl Acad Sci USA 100:2783–2788
        doi: 10.1073/pnas.252758799

    14. Zhao WM, Song SH, Chen ML, Zou D, Ma LN, Ma YK, Li RJ, Hao LL, Li CP, Tian DM, Tang BX, Wang YQ, Zhu JW, Chen HX, Zhang Z, Xue YB, Bao YM (2020) The 2019 novel coronavirus resource. Yi Chuan 42:212–221

    15. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus I, Research T (2020) A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med 382:727–733
        doi: 10.1056/NEJMoa2001017

  • 加载中

Tables(1)

Article Metrics

Article views(4587) PDF downloads(37) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Computational Identification of Small Interfering RNA Targets in SARS-CoV-2

      Corresponding author: Wei Chen, greatchen@ncst.edu.cn
      Corresponding author: Hao Lin, hlin@uestc.edu.cn
    • 1. Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
    • 2. Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
    • 3. Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China

    Abstract: With the epidemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) worldwide and in the absence of any effective vaccine, there is an urgent need to find a specific anti- SARS-CoV-2 agent. In this study, by analyzing the secondary structures of the SARS-CoV-2 genome (MN908947), several 21~25 base-long segments were obtained and selected as the potential targets of small interfering RNA duplexes. Moreover, it was also found that these targets are conserved among different strains. We hope the results will contribute to the pharmaceutical research and therapy of the SARS-CoV-2.