. doi: 10.1016/j.virs.2023.05.002
Citation: Xiang Fang, Guoliang Lu, Yanchun Deng, Sa Yang, Chunsheng Hou, Peng Gong. Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding .VIROLOGICA SINICA, 2023, 38(4) : 531-540.  http://dx.doi.org/10.1016/j.virs.2023.05.002

在一种双顺反子病毒依赖RNA的RNA聚合酶的晶体结构中观察到的亚结构非常规构象提示该蛋白N端延伸区对蛋白整体正确折叠的贡献

  • 双顺反子病毒科包含多种昆虫病原。这类病毒包含一条正链RNA基因组,由病毒编码的依赖RNA的RNA聚合酶(RdRP)3Dpol进行基因组复制。与小RNA病毒科如脊髓灰质炎病毒(PV)的3Dpol相比,双顺反子病毒科中的代表以色列急性麻痹病毒(IAPV)3Dpol的有一段长约40个氨基酸残基的氨基端延伸区(NE)。截至目前,双顺反子病毒科RdRP的结构特征与催化机制仍不明晰。本文报道了分别命名为Δ85和Δ40的两种截短体形式IAPV 3Dpol的晶体结构,这两种截短体都缺失NE区域, 3Dpol在这两个结构中呈现出三种构象状态。IAPV 3Dpol的手掌区和拇指区结构在很大程度上与PV 3Dpol一致。然而,在所有的IAPV结构中,RdRP手指区均呈现部分无序状态,多个RdRP亚结构的构象及亚结构间的相互作用存在差异。尤其在Δ40结构的一种构象状态中,基序B-中指区域发生了较大幅度的构象变化,而此前曾报道的基序A的一种非常规构象在所有的IAPV结构中都能观察到。以上这些实验数据一方面展现了RdRP多个亚结构固有的构象多样性,另一方面也提示NE区域对IAPV RdRP的正确折叠可能存在贡献。

Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding

  • The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.

  • 加载中
    1. Appleby, T.C., Perry, J.K., Murakami, E., Barauskas, O., Feng, J., Cho, A., Fox, D., 3rd, Wetmore, D.R., Mcgrath, M.E., Ray, A.S., Sofia, M.J., Swaminathan, S.,Edwards, T.E., 2015. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 347, 771-775.

    2. Bailey, L., Gibbs, A.J.,Woods, R.D., 1963. Two Viruses from Adult Honey Bees (Apis Mellifera Linnaeus). Virology, 21, 390-395.

    3. Baltimore, D., Eggers, H.J., Franklin, R.M.,Tamm, I., 1963. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proc Natl Acad Sci U S A, 49, 843-849.

    4. Beese, L.S.,Steitz, T.A., 1991. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I:a two metal ion mechanism. EMBO J, 10, 25-33.

    5. Bi, P., Shu, B.,Gong, P., 2017. Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics. Virol Sin, 32, 548-552.

    6. Bruenn, J.A., 2003. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res, 31, 1821-1829.

    7. Brunger, A.T., Adams, P.D., Clore, G.M., Delano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T.,Warren, G.L., 1998. Crystallography & NMR system:A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 54, 905-921.

    8. Chiu, J., Tillett, D., Dawes, I.W.,March, P.E., 2008. Site-directed, Ligase-Independent Mutagenesis (SLIM) for highly efficient mutagenesis of plasmids greater than 8kb. Journal of Microbiological Methods, 73, 195-198.

    9. Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., Martinson, V., Vanengelsdorp, D., Kalkstein, A.L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S.K., Simons, J.F., Egholm, M., Pettis, J.S.,Lipkin, W.I., 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318, 283-287.

    10. De Miranda, J.R., Cordoni, G.,Budge, G., 2010. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol, 103 Suppl 1, S30-47.

    11. De Miranda, J.R., Drebot, M., Tyler, S., Shen, M., Cameron, C.E., Stoltz, D.B.,Camazine, S.M., 2004. Complete nucleotide sequence of Kashmir bee virus and comparison with acute bee paralysis virus. J Gen Virol, 85, 2263-2270.

    12. Egloff, M.P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., Ferron, F.,Canard, B., 2007. Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol, 372, 723-736.

    13. Emsley, P.,Cowtan, K., 2004. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 60, 2126-2132.

    14. Frias-Staheli, N., Giannakopoulos, N.V., Kikkert, M., Taylor, S.L., Bridgen, A., Paragas, J., Richt, J.A., Rowland, R.R., Schmaljohn, C.S., Lenschow, D.J., Snijder, E.J., Garcia-Sastre, A.,Virgin, H.W.T., 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe, 2, 404-416.

    15. Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., Yang, X., Li, J., Yang, H., Liu, Z., Xu, W., Guddat, L.W., Wang, Q., Lou, Z.,Rao, Z., 2020. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368, 779-782.

    16. Gong, P., 2021. Structural basis of viral RNA-dependent RNA polymerase nucleotide addition cycle in picornaviruses. Enzymes, 49, 215-233.

    17. Gong, P.,Peersen, O.B., 2010. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A, 107, 22505-22510.

    18. Gorbalenya, A.E., Pringle, F.M., Zeddam, J.L., Luke, B.T., Cameron, C.E., Kalmakoff, J., Hanzlik, T.N., Gordon, K.H.,Ward, V.K., 2002. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol, 324, 47-62.

    19. Govan, V.A., Leat, N., Allsopp, M.,Davison, S., 2000. Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology, 277, 457-463.

    20. Hansen, J.L., Long, A.M.,Schultz, S.C., 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure, 5, 1109-1122.

    21. Hendrickson, W.A., 2014. Anomalous diffraction in crystallographic phase evaluation. Q Rev Biophys, 47, 49-93.

    22. Hillen, H.S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D.,Cramer, P., 2020. Structure of replicating SARS-CoV-2 polymerase. Nature, 584, 154-156.

    23. Jia, H.,Gong, P., 2019. A Structure-Function Diversity Survey of the RNA-Dependent RNA Polymerases From the Positive-Strand RNA Viruses. Front Microbiol, 10, 1945.

    24. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.a.A., Ballard, A.J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A.W., Kavukcuoglu, K., Kohli, P.,Hassabis, D., 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.

    25. Lanzi, G., De Miranda, J.R., Boniotti, M.B., Cameron, C.E., Lavazza, A., Capucci, L., Camazine, S.M.,Rossi, C., 2006. Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J Virol, 80, 4998-5009.

    26. Lehmann, K.C., Gulyaeva, A., Zevenhoven-Dobbe, J.C., Janssen, G.M., Ruben, M., Overkleeft, H.S., Van Veelen, P.A., Samborskiy, D.V., Kravchenko, A.A., Leontovich, A.M., Sidorov, I.A., Snijder, E.J., Posthuma, C.C.,Gorbalenya, A.E., 2015. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res, 43, 8416-8434.

    27. Lesburg, C.A., Cable, M.B., Ferrari, E., Hong, Z., Mannarino, A.F.,Weber, P.C., 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol, 6, 937-943.

    28. Li, R., Wang, M.,Gong, P., 2022. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res, 10.1093/nar/gkac1133.

    29. Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I., Hintze, B., Hung, L.W., Jain, S., Mccoy, A.J., Moriarty, N.W., Oeffner, R.D., Poon, B.K., Prisant, M.G., Read, R.J., Richardson, J.S., Richardson, D.C., Sammito, M.D., Sobolev, O.V., Stockwell, D.H., Terwilliger, T.C., Urzhumtsev, A.G., Videau, L.L., Williams, C.J.,Adams, P.D., 2019. Macromolecular structure determination using X-rays, neutrons and electrons:recent developments in Phenix. Acta Crystallographica Section D-Structural Biology, 75, 861-877.

    30. Liu, W., Shi, X.,Gong, P., 2018. A unique intra-molecular fidelity-modulating mechanism identified in a viral RNA-dependent RNA polymerase. Nucleic Acids Res, 46, 10840-10854.

    31. Lu, G.,Gong, P., 2013. Crystal Structure of the Full-Length Japanese Encephalitis Virus NS5 Reveals a Conserved Methyltransferase-Polymerase Interface. PLoS Pathog, 9, e1003549.

    32. Maori, E., Lavi, S., Mozes-Koch, R., Gantman, Y., Peretz, Y., Edelbaum, O., Tanne, E.,Sela, I., 2007. Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel:evidence for diversity due to intra- and inter-species recombination. Journal of General Virology, 88, 3428-3438.

    33. Nakashima, N.,Nakamura, Y., 2008. Cleavage sites of the "P3 region" in the nonstructural polyprotein precursor of a dicistrovirus. Archives of Virology, 153, 1955-1960.

    34. Neufeld, K.L., Richards, O.C.,Ehrenfeld, E., 1991. Purification, characterization, and comparison of poliovirus RNA polymerase from native and recombinant sources. J Biol Chem, 266, 24212-24219.

    35. Otwinowski, Z.,Minor, W., 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 276, 307-326.

    36. Paul, A.V.,Wimmer, E., 2015. Initiation of protein-primed picornavirus RNA synthesis. Virus Res, 206, 12-26.

    37. Peersen, O.B., 2019. A Comprehensive Superposition of Viral Polymerase Structures. Viruses, 11.

    38. Reddy, K.E., Noh, J.H., Kim, Y.H., Yoo, M.S., Doan, H.T.T., Ramya, M., Jung, S.C., Quyen, D.V.,Kang, S.W., 2013. Analysis of the nonstructural and structural polyprotein regions, and complete genome sequences of Israel acute paralysis viruses identified from honeybees (Apis mellifera) in Korea. Virology, 444, 211-217.

    39. Reich, E., Franklin, R.M., Shatkin, A.J.,Tatum, E.L., 1961. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science, 134, 556-557.

    40. Shu, B.,Gong, P., 2016. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci U S A, 113, E4005-4014.

    41. Shu, B.,Gong, P., 2017. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase. RNA Biol, 10.1080/15476286.2017.1300221, 1-6.

    42. Terwilliger, T.C., Adams, P.D., Read, R.J., Mccoy, A.J., Moriarty, N.W., Grosse-Kunstleve, R.W., Afonine, P.V., Zwart, P.H.,Hung, L.W., 2009. Decision-making in structure solution using Bayesian estimates of map quality:the PHENIX AutoSol wizard. Acta Crystallographica Section D-Biological Crystallography, 65, 582-601.

    43. Terwilliger, T.C., Grosse-Kunstleve, R.W., Afonine, P.V., Moriarty, N.W., Zwart, P.H., Hung, L.W., Read, R.J.,Adams, P.D., 2008. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallographica Section D-Biological Crystallography, 64, 61-69.

    44. Theobald, D.L.,Wuttke, D.S., 2008. Accurate structural correlations from maximum likelihood superpositions. PLoS Comput Biol, 4, e43.

    45. Thompson, A.A.,Peersen, O.B., 2004. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J, 23, 3462-3471.

    46. Tong, L.,Rossmann, M.G., 1997. Rotation function calculations with GLRF program. Methods Enzymol, 276, 594-611.

    47. Vives-Adrian, L., Lujan, C., Oliva, B., Van Der Linden, L., Selisko, B., Coutard, B., Canard, B., Van Kuppeveld, F.J., Ferrer-Orta, C.,Verdaguer, N., 2014. The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol, 88, 5595-5607.

    48. Walker, A.P., Fan, H., Keown, J.R., Knight, M.L., Grimes, J.M.,Fodor, E., 2021. The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids Res, 49, 13019-13030.

    49. Wang, M., Li, R., Shu, B., Jing, X., Ye, H.Q.,Gong, P., 2020. Stringent control of the RNA-dependent RNA polymerase translocation revealed by multiple intermediate structures. Nat Commun, 11, 2605.

    50. Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., Liu, Z., Yang, H., Lou, Z., Jiang, B., Guddat, L.W., Gong, P.,Rao, Z., 2020. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell, 182, 417-428 e413.

    51. Wu, J., Lu, G., Zhang, B.,Gong, P., 2015. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J Virol, 89, 249-261.

    52. Wu, J., Wang, X., Liu, Q., Lu, G.,Gong, P., 2023. Structural basis of transition from initiation to elongation in de novo viral RNA-dependent RNA polymerases. Proc Natl Acad Sci U S A, 120, e2211425120.

    53. Yang, J., Jing, X., Yi, W., Li, X.D., Yao, C., Zhang, B., Zheng, Z., Wang, H.,Gong, P., 2021. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res, 49, 1567-1580.

    54. Zhao, Y., Soh, T.S., Zheng, J., Chan, K.W., Phoo, W.W., Lee, C.C., Tay, M.Y., Swaminathan, K., Cornvik, T.C., Lim, S.P., Shi, P.Y., Lescar, J., Vasudevan, S.G.,Luo, D., 2015. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog, 11, e1004682.

  • 加载中

Article Metrics

Article views(1569) PDF downloads(11) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Unusual substructure conformations observed in crystal structures of a dicistrovirus RNA-dependent RNA polymerase suggest contribution of the N-terminal extension in proper folding

      Corresponding author: Chunsheng Hou, houchunsheng@caas.cn
      Corresponding author: Peng Gong, gongpeng@wh.iov.cn
    • a. Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430207, China;
    • b. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China;
    • c. University of Chinese Academy of Sciences, Beijing, 100049, China;
    • d. Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100193, China;
    • e. Hubei Jiangxia Laboratory, Wuhan, 430207, China

    Abstract: The Dicistroviridae is a virus family that includes many insect pathogens. These viruses contain a positive-sense RNA genome that is replicated by the virally encoded RNA-dependent RNA polymerase (RdRP) also named 3Dpol. Compared with the Picornaviridae RdRPs such as poliovirus (PV) 3Dpol, the Dicistroviridae representative Israeli acute paralysis virus (IAPV) 3Dpol has an additional N-terminal extension (NE) region that is about 40-residue in length. To date, both the structure and catalytic mechanism of the Dicistroviridae RdRP have remain elusive. Here we reported crystal structures of two truncated forms of IAPV 3Dpol, namely Δ85 and Δ40, both missing the NE region, and the 3Dpol protein in these structures exhibited three conformational states. The palm and thumb domains of these IAPV 3Dpol structures are largely consistent with those of the PV 3Dpol structures. However, in all structures, the RdRP fingers domain is partially disordered, while different conformations of RdRP substructures and interactions between them are also present. In particular, a large-scale conformational change occurred in the motif B-middle finger region in one protein chain of the Δ40 structure, while a previously documented alternative conformation of motif A was observed in all IAPV structures. These experimental data on one hand show intrinsic conformational variances of RdRP substructures, and on the other hand suggest possible contribution of the NE region in proper RdRP folding in IAPV.

    Reference (54) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return