. doi: 10.1016/j.virs.2023.06.005
Citation: Ke Wang, Yu Pan, Dianbing Wang, Ye Yuan, Min Li, Yuanyuan Chen, Lijun Bi, Xian-En Zhang. Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry .VIROLOGICA SINICA, 2023, 38(4) : 595-605.  http://dx.doi.org/10.1016/j.virs.2023.06.005

SARS-CoV-2刺突蛋白突变体与hACE2结合亲和力及S1/S2切割效率的改变影响病毒进入细胞

  • 通讯作者: 张先恩, zhangxe@ibp.ac.cn
  • 收稿日期: 2023-01-31
    录用日期: 2023-06-15
  • 新型冠状病毒变异株不断出现,影响了公共卫生措施对感染人数的控制。虽然已经观察到不同变异株的刺突蛋白突变直接影响病毒进入宿主细胞,但仍需要进一步对这些变异体进行系统、多方面的比较。本研究系统研究了八种关注变异株(VOC)和感兴趣变异株(VOI)的刺突蛋白突变对蛋白表达量、蛋白酶切割效率、与受体的结合亲和力、病毒进入细胞效率及宿主细胞嗜性的影响。发现Omicron的全长刺突蛋白和其受体结合结构域(RBD)的亲和力与野生型的相似。此外,Alpha、Beta、Delta和Lambda假病毒相比野生型获得了显著增强的进入细胞能力,Omicron假病毒进入细胞的能力略有增加,这表明Omicron变异株显著增加的传播速度与其刺突蛋白和hACE2之间的亲和力无关。还发现Omicron和Mu的刺突蛋白在S1/S2位点被切割的效率较低,且不能有效利用TMPRSS2进入宿主细胞,表明它们更倾向于通过内吞作用途径进入宿主细胞。此外,我们测试的所有变异株假病毒都获得了进入表达动物ACE2细胞的能力,尤其是对大鼠和小鼠的感染潜力显著增加,这表示啮齿动物可能成为病毒进化的储备库。本研究的发现为针对性的流行病控制提供了有价值的指导,有助于更好地理解SARS-CoV-2的演化。

Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry

  • Corresponding author: Xian-En Zhang, zhangxe@ibp.ac.cn
  • Received Date: 31 January 2023
    Accepted Date: 15 June 2023
  • SARS-CoV-2 variants are constantly emerging, hampering public health measures in controlling the number of infections. While it is well established that mutations in spike proteins observed for the different variants directly affect virus entry into host cells, there remains a need for further expansion of systematic and multifaceted comparisons. Here, we comprehensively studied the effect of spike protein mutations on spike expression and proteolytic activation, binding affinity, viral entry efficiency and host cell tropism of eight variants of concern (VOC) and variants of interest (VOI). We found that both the full-length spike and its receptor-binding domain (RBD) of Omicron bind to hACE2 with an affinity similar to that of the wild-type. In addition, Alpha, Beta, Delta and Lambda pseudoviruses gained significantly enhanced cell entry ability compared to the wild-type, while the Omicron pseudoviruses showed a slightly increased cell entry, suggesting the vastly increased rate of transmission observed for Omicron variant is not associated with its affinity to hACE2. We also found that the spikes of Omicron and Mu showed lower S1/S2 cleavage efficiency and inefficiently utilized TMPRSS2 to enter host cells than others, suggesting that they prefer the endocytosis pathway to enter host cells. Furthermore, all variants' pseudoviruses we tested gained the ability to enter the animal ACE2-expressing cells. Especially the infection potential of rats and mice showed significantly increased, strongly suggesting that rodents possibly become a reservoir for viral evolution. The insights gained from this study provide valuable guidance for a targeted approach to epidemic control, and contribute to a better understanding of SARS-CoV-2 evolution.

  • 加载中
    1. Altarawneh, H.N., Chemaitelly, H., Hasan, M.R., Ayoub, H.H., Qassim, S., Almukdad, S., Coyle, P., Yassine, H.M., Al-Khatib, H.A., Benslimane, F.M., Al-Kanaani, Z., Al-Kuwari, E., Jeremijenko, A., Kaleeckal, A.H., Latif, A.N., Shaik, R.M., Abdul-Rahim, H.F., Nasrallah, G.K., Al-Kuwari, M.G., Butt, A.A., Al-Romaihi, H.E., Al-Thani, M.H., Al-Khal, A., Bertollini, R., Tang, P.,Abu-Raddad, L.J., 2022. Protection against the Omicron Variant from Previous SARS-CoV-2 Infection. N Engl J Med, 386, 1288-1290.

    2. Altmann, D.M., Boyton, R.J.,Beale, R., 2021. Immunity to SARS-CoV-2 variants of concern. Science, 371, 1103-1104.

    3. Bayati, A., Kumar, R., Francis, V.,Mcpherson, P.S., 2021. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem, 296, 100306.

    4. Benton, D.J., Wrobel, A.G., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J.,Gamblin, S.J., 2020. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588, 327-330.

    5. Cameroni, E., Bowen, J.E., Rosen, L.E., Saliba, C., Zepeda, S.K., Culap, K., Pinto, D., Vanblargan, L.A., De Marco, A., Di Iulio, J., Zatta, F., Kaiser, H., Noack, J., Farhat, N., Czudnochowski, N., Havenar-Daughton, C., Sprouse, K.R., Dillen, J.R., Powell, A.E., Chen, A., Maher, C., Yin, L., Sun, D., Soriaga, L., Bassi, J., Silacci-Fregni, C., Gustafsson, C., Franko, N.M., Logue, J., Iqbal, N.T., Mazzitelli, I., Geffner, J., Grifantini, R., Chu, H., Gori, A., Riva, A., Giannini, O., Ceschi, A., Ferrari, P., Cippa, P.E., Franzetti-Pellanda, A., Garzoni, C., Halfmann, P.J., Kawaoka, Y., Hebner, C., Purcell, L.A., Piccoli, L., Pizzuto, M.S., Walls, A.C., Diamond, M.S., Telenti, A., Virgin, H.W., Lanzavecchia, A., Snell, G., Veesler, D.,Corti, D., 2022. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 602, 664-670.

    6. Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., Liu, S., Yang, X., Du, S., Zhang, Z., Hao, X., Shao, F., Jin, R., Wang, X., Xiao, J., Wang, Y.,Xie, X.S., 2022. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602, 657-663.

    7. Chandler, J.C., Bevins, S.N., Ellis, J.W., Linder, T.J., Tell, R.M., Jenkins-Moore, M., Root, J.J., Lenoch, J.B., Robbe-Austerman, S., Deliberto, T.J., Gidlewski, T., Kim Torchetti, M.,Shriner, S.A., 2021. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc Natl Acad Sci U S A, 118.

    8. Cui, Z., Liu, P., Wang, N., Wang, L., Fan, K., Zhu, Q., Wang, K., Chen, R., Feng, R., Jia, Z., Yang, M., Xu, G., Zhu, B., Fu, W., Chu, T., Feng, L., Wang, Y., Pei, X., Yang, P., Xie, X.S., Cao, L., Cao, Y.,Wang, X., 2022. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell, 185, 860-871 e813.

    9. Dejnirattisai, W., Shaw, R.H., Supasa, P., Liu, C., Stuart, A.S., Pollard, A.J., Liu, X., Lambe, T., Crook, D., Stuart, D.I., Mongkolsapaya, J., Nguyen-Van-Tam, J.S., Snape, M.D., Screaton, G.R.,Com, C.O.V.S.G., 2022. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet, 399, 234-236.

    10. Du, X., Tang, H., Gao, L., Wu, Z., Meng, F., Yan, R., Qiao, S., An, J., Wang, C.,Qin, F.X., 2022. Omicron adopts a different strategy from Delta and other variants to adapt to host. Signal Transduct Target Ther, 7, 45.

    11. Fan, Y., Li, X., Zhang, L., Wan, S., Zhang, L.,Zhou, F., 2022. SARS-CoV-2 Omicron variant:recent progress and future perspectives. Signal Transduct Target Ther, 7, 141.

    12. Freer, G., Lai, M., Quaranta, P., Spezia, P.G.,Pistello, M., 2021. Evolution of viruses and the emergence of SARS-CoV-2 variants. New Microbiol, 44, 191-204.

    13. Hale, V.L., Dennis, P.M., Mcbride, D.S., Nolting, J.M., Madden, C., Huey, D., Ehrlich, M., Grieser, J., Winston, J., Lombardi, D., Gibson, S., Saif, L., Killian, M.L., Lantz, K., Tell, R.M., Torchetti, M., Robbe-Austerman, S., Nelson, M.I., Faith, S.A.,Bowman, A.S., 2022. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature, 602, 481-486.

    14. Halfmann, P.J., Iida, S., Iwatsuki-Horimoto, K., Maemura, T., Kiso, M., Scheaffer, S.M., Darling, T.L., Joshi, A., Loeber, S., Singh, G., Foster, S.L., Ying, B., Case, J.B., Chong, Z., Whitener, B., Moliva, J., Floyd, K., Ujie, M., Nakajima, N., Ito, M., Wright, R., Uraki, R., Warang, P., Gagne, M., Li, R., Sakai-Tagawa, Y., Liu, Y., Larson, D., Osorio, J.E., Hernandez-Ortiz, J.P., Henry, A.R., Ciuoderis, K., Florek, K.R., Patel, M., Odle, A., Wong, L.R., Bateman, A.C., Wang, Z., Edara, V.V., Chong, Z., Franks, J., Jeevan, T., Fabrizio, T., Debeauchamp, J., Kercher, L., Seiler, P., Gonzalez-Reiche, A.S., Sordillo, E.M., Chang, L.A., Van Bakel, H., Simon, V., Consortium Mount Sinai Pathogen Surveillance Study, G., Douek, D.C., Sullivan, N.J., Thackray, L.B., Ueki, H., Yamayoshi, S., Imai, M., Perlman, S., Webby, R.J., Seder, R.A., Suthar, M.S., Garcia-Sastre, A., Schotsaert, M., Suzuki, T., Boon, A.C.M., Diamond, M.S.,Kawaoka, Y., 2022a. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 603, 687-692.

    15. Halfmann, P.J., Kuroda, M., Armbrust, T., Theiler, J., Balaram, A., Moreno, G.K., Accola, M.A., Iwatsuki-Horimoto, K., Valdez, R., Stoneman, E., Braun, K., Yamayoshi, S., Somsen, E., Baczenas, J.J., Mitamura, K., Hagihara, M., Adachi, E., Koga, M., Mclaughlin, M., Rehrauer, W., Imai, M., Yamamoto, S., Tsutsumi, T., Saito, M., Friedrich, T.C., O'connor, S.L., O'connor, D.H., Gordon, A., Korber, B.,Kawaoka, Y., 2022b. Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Sci Transl Med, 14, eabm4908.

    16. Han, P., Li, L., Liu, S., Wang, Q., Zhang, D., Xu, Z., Han, P., Li, X., Peng, Q., Su, C., Huang, B., Li, D., Zhang, R., Tian, M., Fu, L., Gao, Y., Zhao, X., Liu, K., Qi, J., Gao, G.F.,Wang, P., 2022. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell, 185, 630-640 e610.

    17. He, X., Hong, W., Pan, X., Lu, G.,Wei, X., 2021. SARS-CoV-2 Omicron variant:Characteristics and prevention. MedComm (2020), 2, 838-845.

    18. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., Muller, M.A., Drosten, C.,Pohlmann, S., 2020. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280 e278.

    19. Huang, Y., Xie, J., Guo, Y., Sun, W., He, Y., Liu, K., Yan, J., Tao, A.,Zhong, N., 2021. SARS-CoV-2:Origin, Intermediate Host and Allergenicity Features and Hypotheses. Healthcare (Basel), 9.

    20. Hui, K.P.Y., Ho, J.C.W., Cheung, M.C., Ng, K.C., Ching, R.H.H., Lai, K.L., Kam, T.T., Gu, H., Sit, K.Y., Hsin, M.K.Y., Au, T.W.K., Poon, L.L.M., Peiris, M., Nicholls, J.M.,Chan, M.C.W., 2022. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature, 603, 715-720.

    21. Iwata-Yoshikawa, N., Kakizaki, M., Shiwa-Sudo, N., Okura, T., Tahara, M., Fukushi, S., Maeda, K., Kawase, M., Asanuma, H., Tomita, Y., Takayama, I., Matsuyama, S., Shirato, K., Suzuki, T., Nagata, N.,Takeda, M., 2022. Essential role of TMPRSS2 in SARS-CoV-2 infection in murine airways. Nat Commun, 13, 6100.

    22. Jackson, C.B., Farzan, M., Chen, B.,Choe, H., 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 23, 3-20.

    23. Kuchipudi, S.V., Surendran-Nair, M., Ruden, R.M., Yon, M., Nissly, R.H., Vandegrift, K.J., Nelli, R.K., Li, L., Jayarao, B.M., Maranas, C.D., Levine, N., Willgert, K., Conlan, A.J.K., Olsen, R.J., Davis, J.J., Musser, J.M., Hudson, P.J.,Kapur, V., 2022. Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer. Proc Natl Acad Sci U S A, 119.

    24. Kuhlmann, C., Mayer, C.K., Claassen, M., Maponga, T., Burgers, W.A., Keeton, R., Riou, C., Sutherland, A.D., Suliman, T., Shaw, M.L.,Preiser, W., 2022. Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose. Lancet, 399, 625-626.

    25. Laffeber, C., De Koning, K., Kanaar, R.,Lebbink, J.H.G., 2021. Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J Mol Biol, 433, 167058.

    26. Laiton-Donato, K., Franco-Munoz, C., Alvarez-Diaz, D.A., Ruiz-Moreno, H.A., Usme-Ciro, J.A., Prada, D.A., Reales-Gonzalez, J., Corchuelo, S., Herrera-Sepulveda, M.T., Naizaque, J., Santamaria, G., Rivera, J., Rojas, P., Ortiz, J.H., Cardona, A., Malo, D., Prieto-Alvarado, F., Gomez, F.R., Wiesner, M., Martinez, M.L.O.,Mercado-Reyes, M., 2021. Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. Infect Genet Evol, 95, 105038.

    27. Li, B., Deng, A., Li, K., Hu, Y., Li, Z., Shi, Y., Xiong, Q., Liu, Z., Guo, Q., Zou, L., Zhang, H., Zhang, M., Ouyang, F., Su, J., Su, W., Xu, J., Lin, H., Sun, J., Peng, J., Jiang, H., Zhou, P., Hu, T., Luo, M., Zhang, Y., Zheng, H., Xiao, J., Liu, T., Tan, M., Che, R., Zeng, H., Zheng, Z., Huang, Y., Yu, J., Yi, L., Wu, J., Chen, J., Zhong, H., Deng, X., Kang, M., Pybus, O.G., Hall, M., Lythgoe, K.A., Li, Y., Yuan, J., He, J.,Lu, J., 2022. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nat Commun, 13, 460.

    28. Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S., Yu, J., Chik, K.K., Yuen, T.T., Yoon, C., To, K.K., Chen, H., Yin, M.T., Sobieszczyk, M.E., Huang, Y., Wang, H.H., Sheng, Z., Yuen, K.Y.,Ho, D.D., 2022. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 602, 676-681.

    29. Liu, Y., Liu, J., Plante, K.S., Plante, J.A., Xie, X., Zhang, X., Ku, Z., An, Z., Scharton, D., Schindewolf, C., Widen, S.G., Menachery, V.D., Shi, P.Y.,Weaver, S.C., 2022. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature, 602, 294-299.

    30. Long, B., Carius, B.M., Chavez, S., Liang, S.Y., Brady, W.J., Koyfman, A.,Gottlieb, M., 2022. Clinical update on COVID-19 for the emergency clinician:Presentation and evaluation. Am J Emerg Med, 54, 46-57.

    31. Lu, G., Wang, Q.,Gao, G.F., 2015. Bat-to-human:spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol, 23, 468-478.

    32. Lubinski, B., Fernandes, M.H.V., Frazier, L., Tang, T., Daniel, S., Diel, D.G., Jaimes, J.A.,Whittaker, G.R., 2022. Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike. iScience, 25, 103589.

    33. Ma, Y., Mao, G., Wu, G., Chen, M., Qin, F., Zheng, L.,Zhang, X.E., 2021. Dual-Fluorescence Labeling Pseudovirus for Real-Time Imaging of Single SARS-CoV-2 Entry in Respiratory Epithelial Cells. ACS Appl Mater Interfaces, 13, 24477-24486.

    34. Mannar, D., Saville, J.W., Zhu, X., Srivastava, S.S., Berezuk, A.M., Tuttle, K.S., Marquez, A.C., Sekirov, I.,Subramaniam, S., 2022. SARS-CoV-2 Omicron variant:Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science, 375, 760-764.

    35. Martins, M., Boggiatto, P.M., Buckley, A., Cassmann, E.D., Falkenberg, S., Caserta, L.C., Fernandes, M.H.V., Kanipe, C., Lager, K., Palmer, M.V.,Diel, D.G., 2022. From Deer-to-Deer:SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog, 18, e1010197.

    36. Meng, B., Abdullahi, A., Ferreira, I., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P.P., Fatihi, S., Rathore, S., Zepeda, S.K., Papa, G., Kemp, S.A., Ikeda, T., Toyoda, M., Tan, T.S., Kuramochi, J., Mitsunaga, S., Ueno, T., Shirakawa, K., Takaori-Kondo, A., Brevini, T., Mallery, D.L., Charles, O.J., Collaboration, C.-N.B.C.-., Genotype to Phenotype Japan, C., Ecuador, C.C., Bowen, J.E., Joshi, A., Walls, A.C., Jackson, L., Martin, D., Smith, K.G.C., Bradley, J., Briggs, J.a.G., Choi, J., Madissoon, E., Meyer, K.B., Mlcochova, P., Ceron-Gutierrez, L., Doffinger, R., Teichmann, S.A., Fisher, A.J., Pizzuto, M.S., De Marco, A., Corti, D., Hosmillo, M., Lee, J.H., James, L.C., Thukral, L., Veesler, D., Sigal, A., Sampaziotis, F., Goodfellow, I.G., Matheson, N.J., Sato, K.,Gupta, R.K., 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 603, 706-714.

    37. Miot, E.F., Worthington, B.M., Ng, K.H., De Lataillade, L.G., Pierce, M.P., Liao, Y., Ko, R., Shum, M.H., Cheung, W.Y., Holmes, E.C., Leung, K.S., Zhu, H., Poon, L.L., Peiris, M.J., Guan, Y., Leung, G.M., Wu, J.T.,Lam, T.T., 2022. Surveillance of Rodent Pests for SARS-CoV-2 and Other Coronaviruses, Hong Kong. Emerg Infect Dis, 28, 467-470.

    38. Mohammadi, M., Shayestehpour, M.,Mirzaei, H., 2021. The impact of spike mutated variants of SARS-CoV2[Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz J Infect Dis, 25, 101606.

    39. Neil Ferguson, A.G., Anne Cori, Alexandra Hogan, Wes Hinsley, Erik Volz on Behalf of the Imperial College Covid-19 Response Team. 2022. Report 49:Growth, population distribution and immune escape of Omicron in England[Online]. Imperial College London. Available:https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-49-omicron/[Accessed 12-06 2021].Oie. 2022. SARS-CoV-2 in animals-Situation report 18[Online]. World Organisation for Animal Health. Available:https://www.woah.org/en/document/sars-cov-2-in-animals-situation-report-18/[Accessed 11-07 2022].

    40. Palmer, M.V., Martins, M., Falkenberg, S., Buckley, A., Caserta, L.C., Mitchell, P.K., Cassmann, E.D., Rollins, A., Zylich, N.C., Renshaw, R.W., Guarino, C., Wagner, B., Lager, K.,Diel, D.G., 2021. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J Virol, 95.

    41. Pascarella, S., Bianchi, M., Giovanetti, M., Narzi, D., Cauda, R., Cassone, A.,Ciccozzi, M., 2022. The SARS-CoV-2 Mu variant should not be left aside:It warrants attention for its immuno-escaping ability. J Med Virol, 94, 2479-2486.

    42. Pulliam, J.R.C., Van Schalkwyk, C., Govender, N., Von Gottberg, A., Cohen, C., Groome, M.J., Dushoff, J., Mlisana, K.,Moultrie, H., 2022. Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa. Science, 376, eabn4947.

    43. Ren, S.Y., Wang, W.B., Gao, R.D.,Zhou, A.M., 2022. Omicron variant (B.1.1.529) of SARS-CoV-2:Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases, 10, 1-11.

    44. Ren, W., Ju, X., Gong, M., Lan, J., Yu, Y., Long, Q., Kenney, D.J., O'connell, A.K., Zhang, Y., Zhong, J., Zhong, G., Douam, F., Wang, X., Huang, A., Zhang, R.,Ding, Q., 2022. Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. Mbio, 13, e0009922.

    45. Salahudeen, A.A., Choi, S.S., Rustagi, A., Zhu, J., Van Unen, V., De La, O.S., Flynn, R.A., Margalef-Catala, M., Santos, A.J.M., Ju, J., Batish, A., Usui, T., Zheng, G.X.Y., Edwards, C.E., Wagar, L.E., Luca, V., Anchang, B., Nagendran, M., Nguyen, K., Hart, D.J., Terry, J.M., Belgrader, P., Ziraldo, S.B., Mikkelsen, T.S., Harbury, P.B., Glenn, J.S., Garcia, K.C., Davis, M.M., Baric, R.S., Sabatti, C., Amieva, M.R., Blish, C.A., Desai, T.J.,Kuo, C.J., 2020. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 588, 670-675.

    46. Sharun, K., Dhama, K., Pawde, A.M., Gortazar, C., Tiwari, R., Bonilla-Aldana, D.K., Rodriguez-Morales, A.J., De La Fuente, J., Michalak, I.,Attia, Y.A., 2021. SARS-CoV-2 in animals:potential for unknown reservoir hosts and public health implications. Vet Q, 41, 181-201.

    47. Shuai, H., Chan, J.F., Hu, B., Chai, Y., Yuen, T.T., Yin, F., Huang, X., Yoon, C., Hu, J.C., Liu, H., Shi, J., Liu, Y., Zhu, T., Zhang, J., Hou, Y., Wang, Y., Lu, L., Cai, J.P., Zhang, A.J., Zhou, J., Yuan, S., Brindley, M.A., Zhang, B.Z., Huang, J.D., To, K.K., Yuen, K.Y.,Chu, H., 2022. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature, 603, 693-699.

    48. Smyth, D.S., Trujillo, M., Gregory, D.A., Cheung, K., Gao, A., Graham, M., Guan, Y., Guldenpfennig, C., Hoxie, I., Kannoly, S., Kubota, N., Lyddon, T.D., Markman, M., Rushford, C., San, K.M., Sompanya, G., Spagnolo, F., Suarez, R., Teixeiro, E., Daniels, M., Johnson, M.C.,Dennehy, J.J., 2022. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nat Commun, 13, 635.

    49. Starr, T.N., Greaney, A.J., Hilton, S.K., Ellis, D., Crawford, K.H.D., Dingens, A.S., Navarro, M.J., Bowen, J.E., Tortorici, M.A., Walls, A.C., King, N.P., Veesler, D.,Bloom, J.D., 2020. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 182, 1295-1310 e1220.

    50. Takeda, M., 2022. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol, 66, 15-23.

    51. V'kovski, P., Kratzel, A., Steiner, S., Stalder, H.,Thiel, V., 2021. Coronavirus biology and replication:implications for SARS-CoV-2. Nat Rev Microbiol, 19, 155-170.

    52. Viana, R., Moyo, S., Amoako, D.G., Tegally, H., Scheepers, C., Althaus, C.L., Anyaneji, U.J., Bester, P.A., Boni, M.F., Chand, M., Choga, W.T., Colquhoun, R., Davids, M., Deforche, K., Doolabh, D., Du Plessis, L., Engelbrecht, S., Everatt, J., Giandhari, J., Giovanetti, M., Hardie, D., Hill, V., Hsiao, N.Y., Iranzadeh, A., Ismail, A., Joseph, C., Joseph, R., Koopile, L., Kosakovsky Pond, S.L., Kraemer, M.U.G., Kuate-Lere, L., Laguda-Akingba, O., Lesetedi-Mafoko, O., Lessells, R.J., Lockman, S., Lucaci, A.G., Maharaj, A., Mahlangu, B., Maponga, T., Mahlakwane, K., Makatini, Z., Marais, G., Maruapula, D., Masupu, K., Matshaba, M., Mayaphi, S., Mbhele, N., Mbulawa, M.B., Mendes, A., Mlisana, K., Mnguni, A., Mohale, T., Moir, M., Moruisi, K., Mosepele, M., Motsatsi, G., Motswaledi, M.S., Mphoyakgosi, T., Msomi, N., Mwangi, P.N., Naidoo, Y., Ntuli, N., Nyaga, M., Olubayo, L., Pillay, S., Radibe, B., Ramphal, Y., Ramphal, U., San, J.E., Scott, L., Shapiro, R., Singh, L., Smith-Lawrence, P., Stevens, W., Strydom, A., Subramoney, K., Tebeila, N., Tshiabuila, D., Tsui, J., Van Wyk, S., Weaver, S., Wibmer, C.K., Wilkinson, E., Wolter, N., Zarebski, A.E., Zuze, B., Goedhals, D., Preiser, W., Treurnicht, F., Venter, M., Williamson, C., Pybus, O.G., Bhiman, J., Glass, A., Martin, D.P., Rambaut, A., Gaseitsiwe, S., Von Gottberg, A.,De Oliveira, T., 2022. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 603, 679-686.Wei, C., Shan, K.J., Wang, W., Zhang, S., Huan, Q.,Qian, W., 2021. Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics, 48, 1111-1121.

    53. WHO. 2022a. Tracking SARS-CoV-2 variants[Online]. World Health Organization. Available:https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/[Accessed].

    54. WHO. 2022b. WHO Coronavirus (COVID-19) Dashboard[Online]. World Health Organization:World Health Organization. Available:https://covid19.who.int/[Accessed 12-01 2022].

    55. Wrobel, A.G., Benton, D.J., Xu, P., Roustan, C., Martin, S.R., Rosenthal, P.B., Skehel, J.J.,Gamblin, S.J., 2020. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol, 27, 763-767.

    56. Wu, C., Zheng, M., Yang, Y., Gu, X., Yang, K., Li, M., Liu, Y., Zhang, Q., Zhang, P., Wang, Y., Wang, Q., Xu, Y., Zhou, Y., Zhang, Y., Chen, L.,Li, H., 2020. Furin:A Potential Therapeutic Target for COVID-19. iScience, 23, 101642.

    57. Wu, L., Zhou, L., Mo, M., Liu, T., Wu, C., Gong, C., Lu, K., Gong, L., Zhu, W.,Xu, Z., 2022. SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2. Signal Transduct Target Ther, 7, 8.

    58. Zhang, X., Wu, S., Wu, B., Yang, Q., Chen, A., Li, Y., Zhang, Y., Pan, T., Zhang, H.,He, X., 2021. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther, 6, 430.

    59. Zhang, Y., Wei, M., Wu, Y., Wang, J., Hong, Y., Huang, Y., Yuan, L., Ma, J., Wang, K., Wang, S., Shi, Y., Wang, Z., Guo, H., Xiao, J., Yang, C., Ye, J., Chen, J., Liu, Y., Fu, B., Lan, M., Gong, P., Huang, Z., Su, Y., Chen, Y., Zhang, T., Zhang, J., Zhu, H., Yu, H., Yuan, Q., Cheng, T., Guan, Y.,Xia, N., 2022a. Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Rep, 38, 110558.

    60. Zhang, Y., Zhang, T., Fang, Y., Liu, J., Ye, Q.,Ding, L., 2022b. SARS-CoV-2 spike L452R mutation increases Omicron variant fusogenicity and infectivity as well as host glycolysis. Signal Transduct Target Ther, 7, 76.

    61. Zhao, H., Lu, L., Peng, Z., Chen, L.L., Meng, X., Zhang, C., Ip, J.D., Chan, W.M., Chu, A.W., Chan, K.H., Jin, D.Y., Chen, H., Yuen, K.Y.,To, K.K., 2022. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect, 11, 277-283.

    62. Zheng, L., Wang, K., Chen, M., Qin, F., Yan, C.,Zhang, X.E., 2022. Characterization and Function of Glycans on the Spike Proteins of SARS-CoV-2 Variants of Concern. Microbiol Spectr, 10, e0312022.

  • 加载中
  • 10.1016j.virs.2023.06.005-ESM.doc

Article Metrics

Article views(1738) PDF downloads(10) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Altered hACE2 binding affinity and S1/S2 cleavage efficiency of SARS-CoV-2 spike protein mutants affect viral cell entry

      Corresponding author: Xian-En Zhang, zhangxe@ibp.ac.cn
    • a. National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China;
    • b. Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China;
    • c. University of Chinese Academy of Sciences, Beijing, 100101, China

    Abstract: SARS-CoV-2 variants are constantly emerging, hampering public health measures in controlling the number of infections. While it is well established that mutations in spike proteins observed for the different variants directly affect virus entry into host cells, there remains a need for further expansion of systematic and multifaceted comparisons. Here, we comprehensively studied the effect of spike protein mutations on spike expression and proteolytic activation, binding affinity, viral entry efficiency and host cell tropism of eight variants of concern (VOC) and variants of interest (VOI). We found that both the full-length spike and its receptor-binding domain (RBD) of Omicron bind to hACE2 with an affinity similar to that of the wild-type. In addition, Alpha, Beta, Delta and Lambda pseudoviruses gained significantly enhanced cell entry ability compared to the wild-type, while the Omicron pseudoviruses showed a slightly increased cell entry, suggesting the vastly increased rate of transmission observed for Omicron variant is not associated with its affinity to hACE2. We also found that the spikes of Omicron and Mu showed lower S1/S2 cleavage efficiency and inefficiently utilized TMPRSS2 to enter host cells than others, suggesting that they prefer the endocytosis pathway to enter host cells. Furthermore, all variants' pseudoviruses we tested gained the ability to enter the animal ACE2-expressing cells. Especially the infection potential of rats and mice showed significantly increased, strongly suggesting that rodents possibly become a reservoir for viral evolution. The insights gained from this study provide valuable guidance for a targeted approach to epidemic control, and contribute to a better understanding of SARS-CoV-2 evolution.

    Reference (62) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return