Qiang Zhang, Hanzhe Ye, Cong Liu, Haiwu Zhou, Mingbin He, Xiaodong Liang, Yu Zhou, Kun Wang, Yali Qin, Zhifei Li and Mingzhou Chen. PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment[J]. Virologica Sinica, 2024, 39(2): 235-250. doi: 10.1016/j.virs.2023.12.001
Citation: Qiang Zhang, Hanzhe Ye, Cong Liu, Haiwu Zhou, Mingbin He, Xiaodong Liang, Yu Zhou, Kun Wang, Yali Qin, Zhifei Li, Mingzhou Chen. PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment .VIROLOGICA SINICA, 2024, 39(2) : 235-250.  http://dx.doi.org/10.1016/j.virs.2023.12.001

呼吸道合胞病毒包涵体内PABP驱动的次级凝聚相调控病毒mRNAs的活化

  • 呼吸道合胞病毒(Respiratory syncytial virus, RSV)是引起全世界婴幼儿急性下呼吸道感染(acute lower respiratory tract infection, ALRTI)最重要的病原体。RSV的包涵体(inclusion bodies, IBs)通过液-液相分离(liquid-liquid phase separation, LLPS)形成, 其内部结构——包涵体相关颗粒(IB-associated granules, IBAGs),瞬时浓缩新合成的病毒mRNAs及转录抗终止因子M2-1,但是IBAGs的形成机制以及如何调控病毒mRNAs翻译的分子机制仍不明确。本研究发现RSV IBs的内部结构实际上是由次级LLPS形成的、不含M2-1的病毒信使核糖核蛋白(messenger ribonucleoprotein, mRNP)凝聚物。机制上,RSV核蛋白(nucleoprotein, N)和M2-1与PABP相互作用将PABP募集至RSV IBs,促使PABP通过RNA识别基序(RNA-recognition motif, RRM)结合IBs内转录的病毒mRNAs并驱动次级相分离,即PABP是驱动次级相分离的支架蛋白。此外,PABP-eIF4G1相互作用调控病毒mRNP凝聚物的组成,将特异的翻译起始因子(eIF4G1、eIF4E、eIF4A、eIF4B 呼吸道合胞病毒(Respiratory syncytial virus, RSV)是引起全世界婴幼儿急性下呼吸道感染(acute lower respiratory tract infection, ALRTI)最重要的病原体。RSV的包涵体(inclusion bodies, IBs)通过液-液相分离(liquid-liquid phase separation, LLPS)形成, 其内部结构——包涵体相关颗粒(IB-associated granules, IBAGs),瞬时浓缩新合成的病毒mRNAs及转录抗终止因子M2-1,但是IBAGs的形成机制以及如何调控病毒mRNAs翻译的分子机制仍不明确。本研究发现RSV IBs的内部结构实际上是由次级LLPS形成的、不含M2-1的病毒信使核糖核蛋白(messenger ribonucleoprotein, mRNP)凝聚物。机制上,RSV核蛋白(nucleoprotein, N)和M2-1与PABP相互作用将PABP募集至RSV IBs,促使PABP通过RNA识别基序(RNA-recognition motif, RRM)结合IBs内转录的病毒mRNAs并驱动次级相分离,即PABP是驱动次级相分离的支架蛋白。此外,PABP-eIF4G1相互作用调控病毒mRNP凝聚物的组成,将特异的翻译起始因子(eIF4G1、eIF4E、eIF4A、eIF4B和eIF4H)募集至次级凝聚相中。最后,本研究发现病毒mRNP凝聚物的功能是对病毒mRNAs进行活化,促进病毒mRNAs对核糖体的募集,从而提高病毒mRNAs的翻译效率。我们的研究揭示了一种新的、由LLPS调控的病毒蛋白翻译机制,提供了一种新的靶向次级凝聚相的抗病毒策略。

PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment

  • Inclusion bodies (IBs) of respiratory syncytial virus (RSV) are formed by liquid-liquid phase separation (LLPS) and contain internal structures termed “IB-associated granules” (IBAGs), where anti-termination factor M2-1 and viral mRNAs are concentrated. However, the mechanism of IBAG formation and the physiological function of IBAGs are unclear. Here, we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein (mRNP) condensates formed by secondary LLPS. Mechanistically, the RSV nucleoprotein (N) and M2-1 interact with and recruit PABP to IBs, promoting PABP to bind viral mRNAs transcribed in IBs by RNA-recognition motif and drive secondary phase separation. Furthermore, PABP-eIF4G1 interaction regulates viral mRNP condensate composition, thereby recruiting specific translation initiation factors (eIF4G1, eIF4E, eIF4A, eIF4B and eIF4H) into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment. Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.

  • 加载中
    1. Afonso CL, Amarasinghe GK, Banyai K, Bao Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, Bukreyev A, Calisher CH, Chandran K, Cheng J, Clawson AN, Collins PL, Dietzgen RG, Dolnik O, Domier LL, Durrwald R, Dye JM, Easton AJ, Ebihara H, Farkas SL, Freitas-Astua J, Formenty P, Fouchier RA, Fu Y, Ghedin E, Goodin MM, Hewson R, Horie M, Hyndman TH, Jiang D, Kitajima EW, Kobinger GP, Kondo H, Kurath G, Lamb RA, Lenardon S, Leroy EM, Li CX, Lin XD, Liu L, Longdon B, Marton S, Maisner A, Muhlberger E, Netesov SV, Nowotny N, Patterson JL, Payne SL, Paweska JT, Randall RE, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Shi M, Smither SJ, Stenglein MD, Stone DM, Takada A, Terregino C, Tesh RB, Tian JH, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Verbeek M, Volchkov VE, Wahl-Jensen V, Walsh JA, Walker PJ, Wang D, Wang LF, Wetzel T, Whitfield AE, Xie JT, Yuen KY, Zhang YZ, Kuhn JH. 2016. Taxonomy of the order mononegavirales:Update 2016. Arch Virol, 161:2351-2360.

    2. Andreev DE, Dmitriev SE, Loughran G, Terenin IM, Baranov PV, Shatsky IN. 2018. Translation control of mRNAs encoding mammalian translation initiation factors. Gene, 651:174-182.

    3. Andreou AZ, Klostermeier D. 2013. The dead-box helicase eif4a:Paradigm or the odd one out? RNA Biol, 10:19-32.

    4. Bailly B, Richard CA, Sharma G, Wang L, Johansen L, Cao J, Pendharkar V, Sharma DC, Galloux M, Wang Y, Cui R, Zou G, Guillon P, von Itzstein M, Eléouët JF, Altmeyer R. 2016. Targeting human respiratory syncytial virus transcription anti-termination factor m2-1 to inhibit in vivo viral replication. Sci Rep, 6. 25806.

    5. Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates:Organizers of cellular biochemistry. Nat Rev Mol Cell Biol, 18:285-298.

    6. Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK. 2016. Compositional control of phase-separated cellular bodies. Cell, 166:651-663.

    7. Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eleouet JF, Sizun C. 2012. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus m2-1 protein. PLoS Pathog, 8:e1002734.

    8. Boersma S, Rabouw HH, Bruurs LJM, Pavlovic T, van Vliet ALW, Beumer J, Clevers H, van Kuppeveld FJM, Tanenbaum ME. 2020. Translation and replication dynamics of single RNA viruses. Cell, 183:1930-1945 e1923.

    9. Bouillier C, Cosentino G, Leger T, Rincheval V, Richard CA, Desquesnes A, Sitterlin D, Blouquit-Laye S, Eleouet JF, Gault E, Rameix-Welti MA. 2019. The interactome analysis of the respiratory syncytial virus protein m2-1 suggests a new role in viral mRNA metabolism post-transcription. Sci Rep, 9:15258.

    10. Brangwynne CP EC, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA. 2009. Germline p granules are liquid droplets that localize by controlled dissolution/condensation. Science:324:1729-5932.

    11. Burgui I, Yanguez E, Sonenberg N, Nieto A. 2007. Influenza virus mRNA translation revisited:Is the eif4e cap-binding factor required for viral mRNA translation? J Virol, 81:12427-12438.

    12. Carromeu C, Simabuco FM, Tamura RE, Farinha Arcieri LE, Ventura AM. 2007. Intracellular localization of human respiratory syncytial virus l protein. Arch Virol, 152:2259-2263.

    13. Chothani S, Adami E, Ouyang JF, Viswanathan S, Hubner N, Cook SA, Schafer S, Rackham OJL. 2019. Deltate:Detection of translationally regulated genes by integrative analysis of ribo-seq and rna-seq data. Curr Protoc Mol Biol, 129:e108.

    14. COLLINS PL. 1991. The molecular biology of human respiratory syncytial virus (RSV) of the genus pneumovirus. The Paramyxoviruses:103-162.

    15. Coppolecchia R BP, Stotz A, Linder P. 1993. A new yeast translation initiation factor suppresses a mutation in the eif-4a RNA helicase. EMBO J 12:4005-4011.

    16. Deo RC GC, Rajashankar KR, Burley SK. 2002. Recognition of the rotavirus mRNA 3' consensus by an asymmetric nsp3 homodimer.Cell:108:171-181.

    17. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. Star:Ultrafast universal rna-seq aligner. Bioinformatics, 29:15-21.

    18. Dobrikov MI, Dobrikova EY, Gromeier M. 2013. Dynamic regulation of the translation initiation helicase complex by mitogenic signal transduction to eukaryotic translation initiation factor 4G. Mol Cell Biol, 33:937-946.

    19. Duster R, Kaltheuner IH, Schmitz M, Geyer M. 2021. 1,6-hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem, 296:100260.

    20. Easton AJ, Domachowske JB, Rosenberg HF. 2004. Animal pneumoviruses:Molecular genetics and pathogenesis. Clin Microbiol Rev, 17:390-412.

    21. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP. 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell, 165:1686-1697.

    22. Frottin F, Schueder F, Tiwary S, Gupta R, Korner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS. 2019. The nucleolus functions as a phase-separated protein quality control compartment. Science, 365:342-347.

    23. Galloux M, Risso-Ballester J, Richard CA, Fix J, Rameix-Welti MA, Eleouet JF. 2020. Minimal elements required for the formation of respiratory syncytial virus cytoplasmic inclusion bodies in vivo and in vitro. mBio, 11:e01202-20.

    24. Gao J TY, Hu W, Zheng C. 2022. When poly(a) binding proteins meet viral infections, including sars-cov-2. J Virol:96:e0013622.

    25. García J G-BB, Vivo A, Melero JA. 1993. Cytoplasmic inclusions of respiratory syncytial virus-infected cells:Formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22k protein. Virology:195:243-247.

    26. Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK. 2019. Organization of chromatin by intrinsic and regulated phase separation. Cell, 179:470-484 e421.

    27. Gould PS, Easton AJ. 2007. Coupled translation of the second open reading frame of m2 mRNA is sequence dependent and differs significantly within the subfamily pneumovirinae. J Virol, 81:8488-8496.

    28. Guillén-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina IREA, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X, Chang Y-T, Guck J, Honigmann A, Mahamid J, Hyman AA, Pappu RV, Alberti S, Franzmann TM. 2020. Rna-induced conformational switching and clustering of g3bp drive stress granule assembly by condensation. Cell, 181:346-361.e317.

    29. Hinnebusch AG, Lorsch JR. 2012. The mechanism of eukaryotic translation initiation:New insights and challenges. Cold Spring Harb Perspect Biol, 4, a011544.

    30. Hu M, Bogoyevitch MA, Jans DA. 2020. Impact of respiratory syncytial virus infection on host functions:Implications for antiviral strategies. Physiol Rev, 100:1527-1594.

    31. Hyman AA, Weber CA, Julicher F. 2014. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol, 30:39-58.

    32. Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. 2012. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols, 7:1534-1550.

    33. Jackson RJ, Hellen CU, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol, 11:113-127.

    34. Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 2016. Atpase-modulated stress granules contain a diverse proteome and substructure. Cell, 164:487-498.

    35. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The human genome browser at UCSC. Genome Res, 12:996-1006.

    36. Kim TH TB, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. 2019. Phospho-dependent phase separation of fmrp and caprin1 recapitulates regulation of translation and deadenylation. Science:365:6825-6829.

    37. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. 2021. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol, 22:165-182.

    38. Langdon EM, Gladfelter AS. 2018. A new lens for RNA localization:Liquid-liquid phase separation. Annu Rev Microbiol, 72:255-271.

    39. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10:R25.

    40. Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature, 483:336-340.

    41. Liao Y, Smyth GK, Shi W. 2014. Featurecounts:An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30:923-930.

    42. Lyon AS, Peeples WB, Rosen MK. 2021. A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol, 22:215-235.

    43. Marintchev A, Wagner G. 2004. Translation initiation:Structures, mechanisms, and evolution. Q Rev Biophys, 37:197-284.

    44. Marintchev A, Edmonds KA, Marintcheva B, Hendrickson E, Oberer M, Suzuki C, Herdy B, Sonenberg N, Wagner G. 2009. Topology and regulation of the human eif4a/4g/4h helicase complex in translation initiation. Cell, 136:447-460.

    45. Mason SW, Aberg E, Lawetz C, DeLong R, Whitehead P, Liuzzi M. 2003. Interaction between human respiratory syncytial virus (RSV) m2-1 and p proteins is required for reconstitution of m2-1-dependent RSV minigenome activity. J Virol, 77:10670-10676.

    46. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M. 2013. Both g3bp1 and g3bp2 contribute to stress granule formation. Genes to Cells, 18:135-146.

    47. Merrick WC, Pavitt GD. 2018. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb Perspect Biol, 10.

    48. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 163:123-133.

    49. Nelson EV, Schmidt KM, Deflube LR, Doganay S, Banadyga L, Olejnik J, Hume AJ, Ryabchikova E, Ebihara H, Kedersha N, Ha T, Muhlberger E. 2016. Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol, 90:7268-7284.

    50. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. 2016. Deeptools2:A next generation web server for deep-sequencing data analysis. Nucleic Acids Res, 44:W160-165.

    51. Rima B, Collins P, Easton A, Fouchier R, Kurath G, Lamb RA, Lee B, Maisner A, Rota P, Wang L, Ictv Report C. 2017. Ictv virus taxonomy profile:Pneumoviridae. J Gen Virol, 98:2912-2913.

    52. Rincheval V, Lelek M, Gault E, Bouillier C, Sitterlin D, Blouquit-Laye S, Galloux M, Zimmer C, Eleouet JF, Rameix-Welti MA. 2017. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus. Nat Commun, 8:563.

    53. Risso-Ballester J, Galloux M, Cao J, Le Goffic R, Hontonnou F, Jobart-Malfait A, Desquesnes A, Sake SM, Haid S, Du M, Zhang X, Zhang H, Wang Z, Rincheval V, Zhang Y, Pietschmann T, Eleouet JF, Rameix-Welti MA, Altmeyer R. 2021. A condensate-hardening drug blocks RSV replication in vivo. Nature, 595:596-599.

    54. Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science, 357.

    55. Smith RW, Gray NK. 2010. Poly(a)-binding protein (pabp):A common viral target. Biochem J, 426:1-12.

    56. Smith RWP, Anderson RC, Larralde O, Smith JWS, Gorgoni B, Richardson WA, Malik P, Graham SV, Gray NK. 2017. Viral and cellular mRNA-specific activators harness pabp and eif4g to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A, 114:6310-6315.

    57. Sonenberg N, Hinnebusch AG. 2009. Regulation of translation initiation in eukaryotes:Mechanisms and biological targets. Cell, 136:731-745.

    58. Sorokin, II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. 2021. Non-canonical translation initiation mechanisms employed by eukaryotic viral mRNAs. Biochemistry (Mosc), 86:1060-1094.

    59. Strzyz P. 2021. Targeting viruses in their phase. Nat Rev Mol Cell Biol, 22:585.

    60. Sullender WM. 2000. Respiratory syncytial virus genetic and antigenic diversity. Clinical microbiology reviews:13, 11-15.

    61. Walsh D, Mohr I. 2011. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol, 9:860-875.

    62. Wang H, Wang Y, Yang J, Zhao Q, Tang N, Chen C, Li H, Cheng C, Xie M, Yang Y, Xie Z. 2021. Tissue- and stage-specific landscape of the mouse translatome. Nucleic Acids Res, 49:6165-6180.

    63. Wei MT, Elbaum-Garfinkle S, Holehouse AS, Chen CC, Feric M, Arnold CB, Priestley RD, Pappu RV, Brangwynne CP. 2017. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat Chem, 9:1118-1125.

    64. Yang X, Hu Z, Zhang Q, Fan S, Zhong Y, Guo D, Qin Y, Chen M. 2019. Sg formation relies on eif4gi-g3bp interaction which is targeted by picornavirus stress antagonists. Cell Discov, 5:1.

    65. Zhang P, He D, Xu Y, Hou J, Pan BF, Wang Y, Liu T, Davis CM, Ehli EA, Tan L, Zhou F, Hu J, Yu Y, Chen X, Nguyen TM, Rosen JM, Hawke DH, Ji Z, Chen Y. 2017. Genome-wide identification and differential analysis of translational initiation. Nat Commun, 8:1749.

  • 加载中
  • 10.1016j.virs.2023.12.001-ESM.docx

Article Metrics

Article views(1592) PDF downloads(21) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    PABP-driven secondary condensed phase within RSV inclusion bodies activates viral mRNAs for ribosomal recruitment

      Corresponding author: Yali Qin, yqin@whu.edu.cn
      Corresponding author: Zhifei Li, zhifeili@whu.edu.cn
      Corresponding author: Mingzhou Chen, chenmz@whu.edu.cn
    • a. State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China;
    • b. Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China;
    • c. Hubei Jiangxia Laboratory, Wuhan, 430200, China

    Abstract: Inclusion bodies (IBs) of respiratory syncytial virus (RSV) are formed by liquid-liquid phase separation (LLPS) and contain internal structures termed “IB-associated granules” (IBAGs), where anti-termination factor M2-1 and viral mRNAs are concentrated. However, the mechanism of IBAG formation and the physiological function of IBAGs are unclear. Here, we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein (mRNP) condensates formed by secondary LLPS. Mechanistically, the RSV nucleoprotein (N) and M2-1 interact with and recruit PABP to IBs, promoting PABP to bind viral mRNAs transcribed in IBs by RNA-recognition motif and drive secondary phase separation. Furthermore, PABP-eIF4G1 interaction regulates viral mRNP condensate composition, thereby recruiting specific translation initiation factors (eIF4G1, eIF4E, eIF4A, eIF4B and eIF4H) into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment. Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.

    Reference (65)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return