. doi: 10.1016/j.virs.2024.02.002
Citation: Xinxin Cui, Jinhuan Ma, Zifeng Pang, Lingzhi Chi, Cuishan Mai, Hanlin Liu, Ming Liao, Hailiang Sun. The evolution, pathogenicity and transmissibility of quadruple reassortant H1N2 swine influenza virus in China: A potential threat to public health .VIROLOGICA SINICA, 2024, 39(2) : 205-217.  http://dx.doi.org/10.1016/j.virs.2024.02.002

中国四重重组H1N2猪流感病毒的进化、致病性和传播力:对公共卫生的潜在威胁

  • 猪被认为是流感病毒的“中间宿主”或“混合容器”,可以产生具有大流行潜力的毒株。从2020年到2021年,我们在中国南部的广东、云南和贵州以及中国北部的河南和山东的养猪场进行了猪H1N2流感(swH1N2)病毒监测。我们系统地分析了swH1N2病毒的进化和致病性,并对其复制和传播能力进行了表征。分离的病毒是四重重组H1N2病毒,含有来自pdm/09 H1N1 (PB2、PB1、PA和NP基因)、三重重组猪流感(NS基因)、欧亚禽类(HA和M基因)和最近人源H3N2 (NA基因)谱系的基因。SW/188/20和SW/198/20的NA、PB2和NP与A/Guangdong/Yue Fang277/2017 (H3N2)具有较高的基因相似性。swH1N2的HA基因具有较高的进化速率。分离的5株swH1N2病毒在人、犬和猪细胞以及小鼠的鼻甲、气管和肺中都能有效地复制。A/swine/Shandong/198/2020在猪的呼吸道中可有效复制,并在猪群中有效传播。总的来说,这些当前流行的swH1N2病毒具有人畜共患的潜力,强调了加强swH1N2病毒监测的必要性。

The evolution, pathogenicity and transmissibility of quadruple reassortant H1N2 swine influenza virus in China: A potential threat to public health

  • Swine are regarded as “intermediate hosts” or “mixing vessels” of influenza viruses, capable of generating strains with pandemic potential. From 2020 to 2021, we conducted surveillance on swine H1N2 influenza (swH1N2) viruses in swine farms located in Guangdong, Yunnan, and Guizhou provinces in southern China, as well as Henan and Shandong provinces in northern China. We systematically analyzed the evolution and pathogenicity of swH1N2 isolates, and characterized their replication and transmission abilities. The isolated viruses are quadruple reassortant H1N2 viruses containing genes from pdm/09 H1N1 (PB2, PB1, PA and NP genes), triple-reassortant swine (NS gene), Eurasian Avian-like (HA and M genes), and recent human H3N2 (NA gene) lineages. The NA, PB2, and NP of SW/188/20 and SW/198/20 show high gene similarities to A/Guangdong/Yue Fang277/2017 (H3N2). The HA gene of swH1N2 exhibits a high evolutionary rate. The five swH1N2 isolates replicate efficiently in human, canine, and swine cells, as well as in the turbinate, trachea, and lungs of mice. A/swine/Shandong/198/2020 strain efficiently replicates in the respiratory tract of pigs and effectively transmitted among them. Collectively, these current swH1N2 viruses possess zoonotic potential, highlighting the need for strengthened surveillance of swH1N2 viruses.

  • 加载中
    1. Anderson, T.K., Macken, C.A., Lewis, N. S., Scheuermann, R.H., Van Reeth, K., Brown, I.H., Swenson, S.L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C.T., Donis, R.O., Webby, R.J., Vincent, A.L. 2016. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere, 1, e00275-16.

    2. Barman, S., Krylov, P.S., Fabrizio, T.P., Franks, J., Turner, J.C., Seiler, P., Wang, D., Rehg, J.E., Erickson, G.A., Gramer, M., Webster, R.G., Webby, R.J. 2012. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets. PLoS Pathog, 8, e1002791.

    3. Belser, J.A., Eckert, A.M., Tumpey, T.M., Maines, T.R. 2016. Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models. Microbiol Mol Biol Rev, 80, 733-44.

    4. Bhatta, T.R., Ryt-Hansen, P., Nielsen, J.P., Larsen, L.E., Larsen, I., Chamings, A., Goecke, N.B., Alexandersen, S. 2020. Infection Dynamics of Swine Influenza Virus in a Danish Pig Herd Reveals Recurrent Infections with Different Variants of the H1N2 Swine Influenza A Virus Subtype. Viruses-Basel, 12, 1013.

    5. Bourret, V. 2018. Avian influenza viruses in pigs:An overview. Vet J, 239, 7-14.

    6. Brown, I.H., Harris, P.A., Mccauley, J.W., Alexander, D.J. 1998. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J Gen Virol, 79 (Pt 12), 2947-55.

    7. Cai, M., Zhong, R., Qin, C., Yu, Z., Huang, J., Wen, X., Ji, C., Chen, Y., Cai, Y., Yi, H., Gong, L., Zhang, G. 2021. Ser-Leu substitution at P2 position of the hemagglutinin cleavage site attenuates replication and pathogenicity of Eurasian avian-like H1N2 swine influenza viruses. Vet Microbiol, 253, 108847.

    8. Cao, Z., Zeng, W., Hao, X., Huang, J., Cai, M., Zhou, P., Zhang, G. 2019. Continuous evolution of influenza A viruses of swine from 2013 to 2015 in Guangdong, China. PLoS One, 14, e0217607.

    9. Chare, E.R., Gould, E.A., Holmes, E.C. 2003. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J Gen Virol, 84, 2691-2703.

    10. De Jong, J.C., Paccaud, M.F., De Ronde-Verloop, F.M., Huffels, N.H., Verwei, C., Weijers, T.F., Bangma, P.J., Van Kregten, E., Kerckhaert, J.A., Wicki, F., et al. 1988. Isolation of swine-like influenza A(H1N1) viruses from man in Switzerland and The Netherlands. Ann Inst Pasteur Virol, 139, 429-37.

    11. De Jong, J.C., Smith, D.J., Lapedes, A.S., Donatelli, I., Campitelli, L., Barigazzi, G., Van Reeth, K., Jones, T.C., Rimmelzwaan, G.F., Osterhaus, A.D., Fouchier, R.A. 2007. Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe. J Virol, 81, 4315-22.

    12. Deleu, S., Kakuda, T.N., Spittaels, K., Vercauteren, J. J., Hillewaert, V., Lwin, A., Leopold, L., Hoetelmans, R.M.W. 2018. Single- and multiple-dose pharmacokinetics and safety of pimodivir, a novel, non-nucleoside polymerase basic protein 2 subunit inhibitor of the influenza A virus polymerase complex, and interaction with oseltamivir:a Phase 1 open-label study in healthy volunteers. Br J Clin Pharmacol, 84, 2663-2672.

    13. Fan, S., Hatta, M., Kim, J. H., Halfmann, P., Imai, M., Macken, C.A., Le, M.Q., Nguyen, T., Neumann, G., Kawaoka, Y. 2014. Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun, 5, 5021.

    14. Gao, Y., Zhang, Y., Shinya, K., Deng, G., Jiang, Y., Li, Z., Guan, Y., Tian, G., Li, Y., Shi, J., Liu, L., Zeng, X., Bu, Z., Xia, X., Kawaoka, Y., Chen, H. 2009. Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 5, e1000709.

    15. He, C.Q., Han, G.Z., Wang, D., Liu, W., Li, G.R., Liu, X.P., Ding, N.Z. 2008. Homologous recombination evidence in human and swine influenza A viruses. Virology, 380, 12-20.

    16. He, P., Wang, G., Mo, Y., Yu, Q., Xiao, X., Yang, W., Zhao, W., Guo, X., Chen, Q., He, J., Liang, M., Zhu, J., Ding, Y., Wei, Z., Ouyang, K., Liu, F., Jian, H., Huang, W., Garcia-Sastre, A., Chen, Y. 2018. Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerg Microbes Infect, 7, 85.

    17. Hoffmann, E., Stech, J., Guan, Y., Webster, R.G., Perez, D.R. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol, 146, 2275-89.

    18. Ito, T., Couceiro, J.N., Kelm, S., Baum, L.G., Krauss, S., Castrucci, M.R., Donatelli, I., Kida, H., Paulson, J.C., Webster, R.G., Kawaoka, Y. 1998. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol, 72, 7367-73.

    19. Jang, Y., Seo, T., Seo, S.H. 2020. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch Virol, 165, 1141-1150.

    20. Jung, O., Radenkovic, M., Stojanovic, S., Lindner, C., Batinic, M., Gorke, O., Pissarek, J., Prohl, A., Najman, S., Barbeck, M. 2020. In Vitro and In Vivo Biocompatibility Analysis of a New Transparent Collagen-based Wound Membrane for Tissue Regeneration in Different Clinical Indications. In Vivo, 34, 2287-2295.

    21. Kong, W., Ye, J., Guan, S., Liu, J., Pu, J. 2014. Epidemic status of Swine influenza virus in china. Indian J Microbiol, 54, 3-11.

    22. Lee, J.M., Huddleston, J., Doud, M.B., Hooper, K.A., Wu, N.C., Bedford, T., Bloom, J.D. 2018. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc Natl Acad Sci U S A, 115, E8276-E8285.

    23. Letunic, I., Bork, P. 2021. Interactive Tree Of Life (iTOL) v5:an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293-W296.

    24. Li, Z., Chen, H., Jiao, P., Deng, G., Tian, G., Li, Y., Hoffmann, E., Webster, R.G., Matsuoka, Y., Yu, K. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 79, 12058-64.

    25. Liang, H., Lam, T.T., Fan, X., Chen, X., Zeng, Y., Zhou, J., Duan, L., Tse, M., Chan, C.H., Li, L., Leung, T.Y., Yip, C. H., Cheung, C.L., Zhou, B., Smith, D.K., Poon, L.L., Peiris, M., Guan, Y., Zhu, H. 2014. Expansion of genotypic diversity and establishment of 2009 H1N1 pandemic-origin internal genes in pigs in China. J Virol, 88, 10864-74.

    26. Ma, J., Shen, H., Liu, Q., Bawa, B., Qi, W., Duff, M., Lang, Y., Lee, J., Yu, H., Bai, J., Tong, G., Hesse, R.A., Richt, J.A., Ma, W. 2015. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs. J Virol, 89, 2831-41.

    27. Manz, B., Schwemmle, M., Brunotte, L. 2013. Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol, 87, 7200-9.

    28. Mon, P.P., Thurain, K., Janetanakit, T., Nasamran, C., Bunpapong, N., Aye, A.M., San, Y.Y., Tun, T.N., Amonsin, A. 2020. Swine influenza viruses and pandemic H1N1-2009 infection in pigs, Myanmar. Transbound Emerg Dis, 67, 2653-2666.

    29. Mor, A., White, A., Zhang, K., Thompson, M., Esparza, M., Munoz-Moreno, R., Koide, K., Lynch, K.W., Garcia-Sastre, A., Fontoura, B. M. 2016. Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol, 1, 16069.

    30. Myers, K.P., Olsen, C.W., Gray, G.C. 2007. Cases of swine influenza in humans:a review of the literature. Clin Infect Dis, 44, 1084-8.

    31. Nerome, K., Yoshioka, Y., Sakamoto, S., Yasuhara, H., Oya, A. 1985. Characterization of a 1980-swine recombinant influenza virus possessing H1 hemagglutinin and N2 neuraminidase similar to that of the earliest Hong Kong (H3N2) virus. Arch Virol, 86, 197-211.

    32. Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q. 2015. IQ-TREE:A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32, 268-274.

    33. Ouchi, A., Nerome, K., Kanegae, Y., Ishida, M., Nerome, R., Hayashi, K., Hashimoto, T., Kaji, M., Kaji, Y., Inaba, Y. 1996. Large outbreak of swine influenza in southern Japan caused by reassortant (H1N2) influenza viruses:its epizootic background and characterization of the causative viruses. J Gen Virol, 77 (Pt 8), 1751-9.

    34. Pensaert, M., Ottis, K., Vandeputte, J., Kaplan, M.M., Bachmann, P.A. 1981. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man. Bull World Health Organ, 59, 75-8.

    35. Pereda, A., Cappuccio, J., Quiroga, M. A., Baumeister, E., Insarralde, L., Ibar, M., Sanguinetti, R., Cannilla, M.L., Franzese, D., Escobar Cabrera, O.E., Craig, M.I., Rimondi, A., Machuca, M., Debenedetti, R.T., Zenobi, C., Barral, L., Balzano, R., Capalbo, S., Risso, A., Perfumo, C.J. 2010. Pandemic (H1N1) 2009 outbreak on pig farm, Argentina. Emerg Infect Dis, 16, 304-7.

    36. Pulit-Penaloza, J.A., Belser, J.A., Tumpey, T.M., Maines, T.R. 2019. Mammalian pathogenicity and transmissibility of a reassortant Eurasian avian-like A(H1N1v) influenza virus associated with human infection in China (2015). Virology, 537, 31-35.

    37. Qi, X., Cui, L., Jiao, Y., Pan, Y., Li, X., Zu, R., Huo, X., Wu, B., Tang, F., Song, Y., Zhou, M., Wang, H., Cardona, C.J., Xing, Z. 2013. Antigenic and genetic characterization of a European avian-like H1N1 swine influenza virus from a boy in China in 2011. Arch Virol, 158, 39-53.

    38. Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67, 901-904.

    39. Rambaut, A., Lam, T.T., Max Carvalho, L., Pybus, O.G. 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol, 2, vew007.

    40. Shao, W., Li, X., Goraya, M.U., Wang, S., Chen, J.L. 2017. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci, 18, 1650.

    41. Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016.

    42. Sun, S., Wang, Q., Zhao, F., Chen, W., Li, Z. 2012. Prediction of biological functions on glycosylation site migrations in human influenza H1N1 viruses. PLoS One, 7, e32119.

    43. Tialla, D., Sausy, A., Cisse, A., Sagna, T., Ilboudo, A.K., Ouedraogo, G.A., Hubschen, J.M., Tarnagda, Z., Snoeck, C.J. 2020. Serological evidence of swine exposure to pandemic H1N1/2009 influenza A virus in Burkina Faso. Veterinary Microbiology, 241, 108572.

    44. Vijaykrishna, D., Poon, L.L., Zhu, H.C., Ma, S.K., Li, O.T., Cheung, C.L., Smith, G.J., Peiris, J.S., Guan, Y. 2010. Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science, 328, 1529.

    45. Vijaykrishna, D., Smith, G.J., Pybus, O.G., Zhu, H., Bhatt, S., Poon, L.L., Riley, S., Bahl, J., Ma, S.K., Cheung, C.L., Perera, R.A., Chen, H., Shortridge, K.F., Webby, R.J., Webster, R.G., Guan, Y., Peiris, J.S. 2011. Long-term evolution and transmission dynamics of swine influenza A virus. Nature, 473, 519-22.

    46. Wang, S., Wang, M., Yu, L., Wang, J., Yan, J., Rong, X., Zhou, Y., Shan, T., Tong, W., Li, G., Zheng, H., Tong, G., Yu, H. 2022. Genetic characterization and pathogenicity of a reassortant Eurasian avian-like H1N1 swine influenza virus containing an internal gene cassette from 2009 pandemic H1N1 virus. Virologica Sinica, 37, 627-630.

    47. Weingartl, H.M., Berhane, Y., Hisanaga, T., Neufeld, J., Kehler, H., Emburry-Hyatt, C., Hooper-Mcgreevy, K., Kasloff, S., Dalman, B., Bystrom, J., Alexandersen, S., Li, Y., Pasick, J. 2010. Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd. J Virol, 84, 2245-56.

    48. Yamada, S., Hatta, M., Staker, B.L., Watanabe, S., Imai, M., Shinya, K., Sakai-Tagawa, Y., Ito, M., Ozawa, M., Watanabe, T., Sakabe, S., Li, C., Kim, J.H., Myler, P.J., Phan, I., Raymond, A., Smith, E., Stacy, R., Nidom, C.A., Lank, S.M., Wiseman, R.W., Bimber, B.N., O'connor, D.H., Neumann, G., Stewart, L.J., Kawaoka, Y. 2010. Biological and structural characterization of a host-adapting amino acid in influenza virus. PLoS Pathog, 6, e1001034.

    49. Yang, H., Chen, Y., Qiao, C., He, X., Zhou, H., Sun, Y., Yin, H., Meng, S., Liu, L., Zhang, Q., Kong, H., Gu, C., Li, C., Bu, Z., Kawaoka, Y., Chen, H. 2016. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc Natl Acad Sci U S A, 113, 392-7.

    50. Yang, H., Qiao, C., Tang, X., Chen, Y., Xin, X., Chen, H. 2012. Human infection from avian-like influenza A (H1N1) viruses in pigs, China. Emerg Infect Dis, 18, 1144-6.

    51. Yang, J.R., Kuo, C.Y., Yu, I.L., Kung, F.Y., Wu, F.T., Lin, J.S., Liu, M.T. 2022. Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J, 19, 63.

    52. Younis, S., Kamel, W., Falkeborn, T., Wang, H., Yu, D., Daniels, R., Essand, M., Hinkula, J., Akusjarvi, G., Andersson, L. 2018. Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proc Natl Acad Sci U S A, 115, E3808-E3816.

    53. Yuan, S., Wen, L., Zhou, J. 2018. Inhibitors of Influenza A Virus Polymerase. ACS Infect Dis, 4, 218-223.

    54. Zhu, H., Webby, R., Lam, T.T., Smith, D.K., Peiris, J.S., Guan, Y. 2013. History of Swine influenza viruses in Asia. Curr Top Microbiol Immunol, 370, 57-68.

    55. Zhu, W., Feng, Z., Chen, Y., Yang, L., Liu, J., Li, X., Liu, S., Zhou, L., Wei, H., Gao, R., Wang, D., Shu, Y. 2019. Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine Influenza viruses determines the virulence phenotype in mice. Emerg Microbes Infect, 8, 989-999.

  • 加载中
  • 10.1016j.virs.2024.02.002-ESM.docx

Article Metrics

Article views(219) PDF downloads(6) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    The evolution, pathogenicity and transmissibility of quadruple reassortant H1N2 swine influenza virus in China: A potential threat to public health

      Corresponding author: Ming Liao, mliao@scau.edu.cn
      Corresponding author: Hailiang Sun, hsun@scau.edu.cn
    • a. College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China;
    • b. Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China;
    • c. National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China;
    • d. Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China;
    • e. Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China

    Abstract: Swine are regarded as “intermediate hosts” or “mixing vessels” of influenza viruses, capable of generating strains with pandemic potential. From 2020 to 2021, we conducted surveillance on swine H1N2 influenza (swH1N2) viruses in swine farms located in Guangdong, Yunnan, and Guizhou provinces in southern China, as well as Henan and Shandong provinces in northern China. We systematically analyzed the evolution and pathogenicity of swH1N2 isolates, and characterized their replication and transmission abilities. The isolated viruses are quadruple reassortant H1N2 viruses containing genes from pdm/09 H1N1 (PB2, PB1, PA and NP genes), triple-reassortant swine (NS gene), Eurasian Avian-like (HA and M genes), and recent human H3N2 (NA gene) lineages. The NA, PB2, and NP of SW/188/20 and SW/198/20 show high gene similarities to A/Guangdong/Yue Fang277/2017 (H3N2). The HA gene of swH1N2 exhibits a high evolutionary rate. The five swH1N2 isolates replicate efficiently in human, canine, and swine cells, as well as in the turbinate, trachea, and lungs of mice. A/swine/Shandong/198/2020 strain efficiently replicates in the respiratory tract of pigs and effectively transmitted among them. Collectively, these current swH1N2 viruses possess zoonotic potential, highlighting the need for strengthened surveillance of swH1N2 viruses.

    Reference (55) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return