. doi: 10.1016/j.virs.2024.02.003
Citation: Jian Xiao, Xuan Yao, Xuhua Guan, Jinfeng Xiong, Yaohui Fang, Jingyuan Zhang, You Zhang, Abulimiti Moming, Zhengyuan Su, Jiayin Jin, Yingying Ge, Jun Wang, Zhaojun Fan, Shuang Tang, Shu Shen, Fei Deng, . Viromes of Haemaphysalis longicornis reveal different viral abundance and diversity in free and engorged ticks .VIROLOGICA SINICA, 2024, 39(2) : 194-204.  http://dx.doi.org/10.1016/j.virs.2024.02.003

长角硬蜱病毒组研究揭示游离蜱和吸血蜱具有不同的病毒丰度与多样性

  • 在东亚常见的长角血蜱可以传播多种致病病毒,包括严重急性发热伴血小板减少综合症病毒(SFTSV)。本研究调查了2019年至2020年间在湖北省三个山区内吸血和未吸血的长角血蜱的病毒组。测序分析鉴定出与参考病毒相关的39个病毒序列。这些病毒序列属于未分类病毒和七个病毒家族:Chuviridae、Nairoviridae、Orthomyxoviridae、Parvoviridae、Phenuiviridae、RhabdoviridaeTotiviridae。通过生物信息学分析,我们探讨了影响蜱虫携带的病毒组成结构的关键因素。此外,基于全基因组序列的系统发育分析阐明了Henan tick virus(HNTV)、Dabieshan tick virus(DBSTV)、Okutama tick virus(OKTV)和Jingmen tick virus(JMTV)的分子进化特征。基于单只蜱的精细分子流行病学调查表明DBSTV是长角血蜱中最常见的病毒,流行率为12.59%,其次是HNTV(0.35%),但未检测到JMTV和OKTV。这些结果加深了对中国中部地区长角血蜱病毒组的了解,提示蜱虫吸血状态和地理位置对蜱病毒组结构组成方面的影响作用。对本研究中新发现的病毒株,将在后续的调查和研究中加强对这些病毒的监测,全面评估其溢出潜力和对公共卫生的潜在影响。

Viromes of Haemaphysalis longicornis reveal different viral abundance and diversity in free and engorged ticks

  • Haemaphysalis longicornis ticks, commonly found in East Asia, can transmit various pathogenic viruses, including the severe fever with thrombocytopenia syndrome virus (SFTSV) that has caused febrile diseases among humans in Hubei Province. However, understanding of the viromes of H. longicornis was limited, and the prevalence of viruses among H. longicornis ticks in Hubei was not well clarified. This study investigates the viromes of both engorged (fed) and free (unfed) H. longicornis ticks across three mountainous regions in Hubei Province from 2019 to 2020. RNA-sequencing analysis identified viral sequences that were related to 39 reference viruses belonging to unclassified viruses and seven RNA viral families, namely Chuviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Phenuiviridae, Rhabdoviridae, and Totiviridae. Viral abundance and diversity in these ticks were analysed, and phylogenetic characteristics of the Henan tick virus (HNTV), Dabieshan tick virus (DBSTV), Okutama tick virus (OKTV), and Jingmen tick virus (JMTV) were elucidated based on their full genomic sequences. Prevalence analysis demonstrated that DBSTV was the most common virus found in individual H. longicornis ticks (12.59%), followed by HNTV (0.35%), whereas JMTV and OKTV were not detected. These results improve our understanding of H. longicornis tick viromes in central China and highlight the role of tick feeding status and geography in shaping the viral community. The findings of new viral strains and their potential impact on public health raise the need to strengthen surveillance efforts for comprehensively assessing their spillover potentials.

  • 加载中
    1. Alexander, R.A., Neitz, W.O., 1933. The Transmission of Louping-Ill of Sheep by Ticks. Vet. J. 89, 320-323. https://doi.org/10.1016/s0372-5545(17)39158-7

    2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2

    3. Barker, S.C., Walker, A.R., 2014. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 3816, 1-144. https://doi.org/10.11646/zootaxa.3816.1.1

    4. Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic:A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. https://doi.org/10.1093/bioinformatics/btu170

    5. Buchfink, B., Reuter, K., Drost, H.G., 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366-368. https://doi.org/10.1038/s41592-021-01101-x

    6. Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., Xia, R., 2020. TBtools:An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 13, 1194-1202. https://doi.org/10.1016/j.molp.2020.06.009

    7. Chen, X., Li, F., Yin, Q., Liu, W., Fu, S., He, Y., Lei, W., Xu, S., Liang, G., Wang, S., Yang, G., Qi, X., Wang, H., 2019. Epidemiology of tick-borne encephalitis in China, 2007-2018. PLoS One 14, e0226712. https://doi.org/10.1371/journal.pone.0226712

    8. Colmant, A.M.G., Charrel, R.N., Coutard, B., 2022. Jingmenviruses:Ubiquitous, understudied, segmented flavi-like viruses. Front. Microbiol. 13, 997058. https://doi.org/10.3389/fmicb.2022.997058

    9. Dinçer, E., Hacioǧlu, S., Kar, S., Emanet, N., Brinkmann, A., Nitsche, A., Özkul, A., Linton, Y.M., Ergünay, K., 2019. Survey and characterization of jingmen tick virus variants. Viruses 11, 1071. https://doi.org/10.3390/v11111071

    10. Fang, L.Q., Liu, K., Li, X. Lou, Liang, S., Yang, Y., Yao, H.W., Sun, R.X., Sun, Y., Chen, W.J., Zuo, S.Q., Ma, M.J., Li, H., Jiang, J.F., Liu, W., Yang, X.F., Gray, G.C., Krause, P.J., Cao, W.C., 2015. Emerging tick-borne infections in mainland China:An increasing public health threat. Lancet Infect. Dis. 15, 1467-1479. https://doi.org/10.1016/S1473-3099(15)00177-2

    11. Fogaça, A.C., Sousa, G., Pavanelo, D.B., Esteves, E., Martins, L.A., Urbanová, V., Kopáček, P., Daffre, S., 2021. Tick Immune System:What Is Known, the Interconnections, the Gaps, and the Challenges. Front. Immunol. 12, 628054. https://doi.org/10.3389/fimmu.2021.628054

    12. Gao, X., Nasci, R., Liang, G., 2010. The neglected arboviral infections in mainland china. PLoS Negl. Trop. Dis. 4, e624. https://doi.org/10.1371/journal.pntd.0000624

    13. Gargili, A., Estrada-Peña, A., Spengler, J.R., Lukashev, A., Nuttall, P.A., Bente, D.A., 2017. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus:A review of published field and laboratory studies. Antiviral Res. 144, 93-119. https://doi.org/10.1016/j.antiviral.2017.05.010

    14. Gondard, M., Temmam, S., Devillers, E., Pinarello, V., Bigot, T., Chrétien, D., Aprelon, R., Vayssier-Taussat, M., Albina, E., Eloit, M., Moutailler, S., 2020. RNA viruses of amblyomma variegatum and rhipicephalus microplus and cattle susceptibility in the French antilles. Viruses 12, 144. https://doi.org/10.3390/v12020144

    15. Gritsun, T.S., Lashkevich, V.A., Gould, E.A., 2003. Tick-borne encephalitis. Antiviral Res. 57, 129-146. https://doi.org/10.1016/S0166-3542(02)00206-1

    16. Guo, J.J., Lin, X.D., Chen, Y.M., Hao, Z.Y., Wang, Z.X., Yu, Z.M., Lu, M., Li, K., Qin, X.C., Wang, W., Holmes, E.C., Hou, W., Zhang, Y.Z., 2020. Diversity and circulation of Jingmen tick virus in ticks and mammals. Virus Evol. 6, veaa051. https://doi.org/10.1093/ve/veaa051

    17. Höfler, D., Nicklas, W., Mauter, P., Pawlita, M., Schmitt, M., 2014. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents. PLoS One 9, e97525. https://doi.org/10.1371/journal.pone.0097525

    18. Hoogstraal, H., 1979. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J. Med. Entomol. 15, 307-417. https://doi.org/10.1093/jmedent/15.4.307

    19. Jia, N., Wang, J., Shi, W., Du, L., Sun, Y., Zhan, W., Jiang, J.F., Wang, Q., Zhang, B., Ji, P., Bell-Sakyi, L., Cui, X.M., Yuan, T.T., Jiang, B.G., Yang, W.F., Lam, T.T.Y., Chang, Q.C., Ding, S.J., Wang, X.J., Zhu, J.G., Ruan, X.D., Zhao, L., Wei, J. Te, Ye, R.Z., Que, T.C., Du, C.H., Zhou, Y.H., Cheng, J.X., Dai, P.F., Guo, W. Bin, Han, X.H., Huang, E.J., Li, L.F., Wei, W., Gao, Y.C., Liu, J.Z., Shao, H.Z., Wang, X., Wang, C.C., Yang, T.C., Huo, Q.B., Li, W., Chen, H.Y., Chen, S.E., Zhou, L.G., Ni, X.B., Tian, J.H., Sheng, Y., Liu, T., Pan, Y.S., Xia, L.Y., Li, J., Zhao, F., Cao, W.C., 2020. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 182, 1328-1340.e13. https://doi.org/10.1016/j.cell.2020.07.023

    20. Kobayashi, D., Murota, K., Itokawa, K., Ejiri, H., Amoa-Bosompem, M., Faizah, A.N., Watanabe, M., Maekawa, Y., Hayashi, T., Noda, S., Yamauchi, T., Komagata, O., Sawabe, K., Isawa, H., 2020. RNA virome analysis of questing ticks from Hokuriku District, Japan, and the evolutionary dynamics of tick-borne phleboviruses. Ticks Tick. Borne. Dis. 11, 101364. https://doi.org/10.1016/j.ttbdis.2019.101364

    21. Kodama, F., Yamaguchi, H., Park, E., Tatemoto, K., Sashika, M., Nakao, R., Terauchi, Y., Mizuma, K., Orba, Y., Kariwa, H., Hagiwara, K., Okazaki, K., Goto, A., Komagome, R., Miyoshi, M., Ito, T., Yamano, K., Yoshii, K., Funaki, C., Ishizuka, M., Shigeno, A., Itakura, Y., Bell-Sakyi, L., Edagawa, S., Nagasaka, A., Sakoda, Y., Sawa, H., Maeda, K., Saijo, M., Matsuno, K., 2021. A novel nairovirus associated with acute febrile illness in Hokkaido, Japan. Nat. Commun. 12, 5539. https://doi.org/10.1038/s41467-021-25857-0

    22. Labbé, M., Girard, C., Vincent, W.F., Culley, A.I., 2020. Extreme Viral Partitioning in a Marine-Derived High Arctic Lake. mSphere 5, e00334-20. https://doi.org/10.1128/mSphere.00334-20

    23. Letunic, I., Bork, P., 2019. Interactive Tree Of Life (iTOL) v4:recent updates and new developments. Nucleic Acids Res. 47, W256-W259. https://doi.org/10.1093/nar/gkz239

    24. Li, B., Dewey, C.N., 2011. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323. https://doi.org/10.1186/1471-2105-12-323

    25. Li, C.X., Shi, M., Tian, J.H., Lin, X.D., Kang, Y.J., Chen, L.J., Qin, X.C., Xu, J., Holmes, E.C., Zhang, Y.Z., 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 2015, e05378. https://doi.org/10.7554/eLife.05378

    26. Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W., 2015. MEGAHIT:An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676. https://doi.org/10.1093/bioinformatics/btv033

    27. Li, D. xin, 2011.[Fever with thrombocytopenia associated with a novel bunyavirus in China]. Chinese J. Exp. Clin. Virol. 25, 81-84. https://doi.org/10.1056/nejmoa1010095

    28. Li, J., Li, S., Yang, L., Cao, P., Lu, J., 2021. Severe fever with thrombocytopenia syndrome virus:a highly lethal bunyavirus. Crit. Rev. Microbiol. 47, 112-125. https://doi.org/10.1080/1040841X.2020.1847037

    29. Li, P., Piao, Y., Shon, H.S., Ryu, K.H., 2015. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16, 347. https://doi.org/10.1186/s12859-015-0778-7

    30. Lindquist, L., Vapalahti, O., 2008. Tick-borne encephalitis. Lancet 371, 1861-1871. https://doi.org/10.1016/S0140-6736(08)60800-4

    31. Liu, Q., He, B., Huang, S.Y., Wei, F., Zhu, X.Q., 2014. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infect. Dis. 14, 763-772. https://doi.org/10.1016/S1473-3099(14)70718-2

    32. Liu, Y., Guo, L., Wang, G., Gao, F., Tu, Z., Xu, D., Sun, L., Yi, L., Zhu, G., Tu, C., He, B., 2023. DNA virome of ticks in the Northeast and Hubei provinces of China reveals diverse single-stranded circular DNA viruses. Parasites and Vectors 16, 61. https://doi.org/10.1186/s13071-023-05684-6

    33. Lu, Z., Bröker, M., Liang, G., 2008. Tick-borne encephalitis in Mainland China. Vector-Borne Zoonotic Dis. 8, 713-720. https://doi.org/10.1089/vbz.2008.0028

    34. Ma, C., Zhang, R., Zhou, H., Yu, G., Yu, L., Li, J., Cui, M., Carr, M.J., Zhang, Z., Shi, W., 2022. Prevalence and genetic diversity of Dabieshan tick virus in Shandong Province, China. J. Infect. 85, 90-122. https://doi.org/10.1016/j.jinf.2022.04.002

    35. Ma, J., Lv, X.L., Zhang, X., Han, S.Z., Wang, Z.D., Li, L., Sun, H.T., Ma, L.X., Cheng, Z.L., Shao, J.W., Chen, C., Zhao, Y.H., Sui, L., Liu, L.N., Qian, J., Wang, W., Liu, Q., 2021. Identification of a new orthonairovirus associated with human febrile illness in China. Nat. Med. 27, 434-439. https://doi.org/10.1038/s41591-020-01228-y

    36. Madison-Antenucci, S., Kramer, L.D., Gebhardt, L.L., Kauffman, E., 2020. Emerging tick-borne diseases. Clin. Microbiol. Rev. 33, e00083-18. https://doi.org/10.1128/CMR.00083-18

    37. Maruyama, S.R., Castro-Jorge, L.A., Ribeiro, J.M.C., Gardinassi, L.G., Garcia, G.R., Brandão, L.G., Rodrigues, A.R., Okada, M.I., Abrão, E.P., Ferreira, B.R., da Fonseca, B.A.L., de Miranda-Santos, I.K.F., 2014. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil. Mem. Inst. Oswaldo Cruz 109, 38-50. https://doi.org/10.1590/0074-0276130166

    38. Matsumoto, N., Masuoka, H., Hirayama, K., Yamada, A., Hotta, K., 2018. Detection and phylogenetic analysis of phlebovirus, including severe fever with thrombocytopenia syndrome virus, in ticks collected from Tokyo, Japan. J. Vet. Med. Sci. 80, 638-641. https://doi.org/10.1292/jvms.17-0604

    39. Mekata, H., Kobayashi, I., Okabayashi, T., 2023. Detection and phylogenetic analysis of Dabieshan tick virus and Okutama tick virus in ticks collected from Cape Toi, Japan. Ticks Tick. Borne. Dis. 14, 102237. https://doi.org/10.1016/j.ttbdis.2023.102237

    40. Moming, A., Shen, S., Fang, Y., Zhang, J., Zhang, Yanfang, Tang, S., Li, T., Hu, Z., Wang, H., Zhang, Yujiang, Sun, S., Wang, L.F., Deng, F., 2021. Evidence of human exposure to tamdy virus, Northwest China. Emerg. Infect. Dis. 27, 3166-3170. https://doi.org/10.3201/eid2712.203532

    41. Moming, A., Yue, X., Shen, S., Chang, C., Wang, C., Luo, T., Zhang, Yanfang, Guo, R., Hu, Z., Zhang, Yujiang, Deng, F., Sun, S., 2018. Prevalence and Phylogenetic Analysis of Crimean-Congo Hemorrhagic Fever Virus in Ticks from Different Ecosystems in Xinjiang, China. Virol. Sin. 33, 67-73. https://doi.org/10.1007/s12250-018-0016-3

    42. Ni, X.B., Cui, X.M., Liu, J.Y., Ye, R.Z., Wu, Y.Q., Jiang, J.F., Sun, Y., Wang, Q., Shum, M.H.H., Chang, Q.C., Zhao, L., Han, X.H., Ma, K., Shen, S.J., Zhang, M.Z., Guo, W. Bin, Zhu, J.G., Zhan, L., Li, L.J., Ding, S.J., Zhu, D.Y., Zhang, J., Xia, L.Y., Oong, X.Y., Ruan, X.D., Shao, H.Z., Que, T.C., Liu, G.Y., Du, C.H., Huang, E.J., Wang, X., Du, L.F., Wang, C.C., Shi, W.Q., Pan, Y.S., Zhou, Y.H., Qu, J.L., Ma, J., Gong, C.W., Chen, Q.Q., Qin, Q., Lam, T.T.Y., Jia, N., Cao, W.C., 2023. Metavirome of 31 tick species provides a compendium of 1,801 RNA virus genomes. Nat. Microbiol. 8, 162-173. https://doi.org/10.1038/s41564-022-01275-w

    43. Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Solymos, P.M., Stevens, M.H.H., & Wagner, H., 2008. The vegan package. Community Ecol. Packag. 190.

    44. Qin, X.C., Shi, M., Tian, J.H., Lin, X.D., Gao, D.Y., He, J.R., Wang, J.B., Li, C.X., Kang, Y.J., Yu, B., Zhou, D.J., Xu, J., Plyusnin, A., Holmes, E.C., Zhang, Y.Z., 2014. A tick-borne segmented RNA virus contains genome segments derived from unsegmented viral ancestors. Proc. Natl. Acad. Sci. U. S. A. 111, 6744-6749. https://doi.org/10.1073/pnas.1324194111

    45. Randolph, S.E., 2011. Transmission of tick-borne pathogens between co-feeding ticks:Milan Labuda's enduring paradigm. Ticks Tick. Borne. Dis. 2, 179-182. https://doi.org/10.1016/j.ttbdis.2011.07.004

    46. Sameroff, S., Tokarz, R., Charles, R.A., Jain, K., Oleynik, A., Che, X., Georges, K., Carrington, C. V., Lipkin, W.I., Oura, C., 2019. Viral Diversity of Tick Species Parasitizing Cattle and Dogs in Trinidad and Tobago. Sci. Rep. 9, 10421. https://doi.org/10.1038/s41598-019-46914-1

    47. Shao, L., Pang, Z., Fu, H., Chang, R., Lin, Z., Lv, A., Wang, S., Kong, X., Luo, M., Liu, X., Yu, X., Liu, L., Niu, G., 2020. Identification of recently identified tick-borne viruses (Dabieshan tick virus and SFTSV) by metagenomic analysis in ticks from Shandong Province, China. J. Infect. 81, 973-978. https://doi.org/10.1016/j.jinf.2020.10.022

    48. Shi, J., Hu, Z., Deng, F., Shen, S., 2018. Tick-Borne Viruses. Virol. Sin. 33, 21-43. https://doi.org/10.1007/s12250-018-0019-0

    49. Souza, W.M. de, Fumagalli, M.J., Torres Carrasco, A. de O., Romeiro, M.F., Modha, S., Seki, M.C., Gheller, J.M., Daffre, S., Nunes, M.R.T., Murcia, P.R., Acrani, G.O., Figueiredo, L.T.M., 2018. Viral diversity of Rhipicephalus microplus parasitizing cattle in southern Brazil. Sci. Rep. 8, 16315. https://doi.org/10.1038/s41598-018-34630-1

    50. Sun, S., Dai, X., Aishan, M., Wang, X., Meng, W., Feng, C., Zhang, F., Hang, C., Hu, Z., Zhang, Y., 2009. Epidemiology and phylogenetic analysis of Crimean-Congo hemorrhagic fever viruses in Xinjiang, China. J. Clin. Microbiol. 47, 2536-2543. https://doi.org/10.1128/JCM.00265-09

    51. Swanepoel, R., Shepherd, A.J., Leman, P.A., McGillivray, G.M., Erasmus, M.J., Searle, L.A., Gill, D.E., 1987. Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa. Am. J. Trop. Med. Hyg. 36, 120-132. https://doi.org/10.4269/ajtmh.1987.36.120

    52. Tamura, K., Stecher, G., Kumar, S., 2021. MEGA11:Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38, 3022-3027. https://doi.org/10.1093/molbev/msab120

    53. Temmam, S., Bigot, T., Chrétien, D., Gondard, M., Pérot, P., Pommelet, V., Dufour, E., Petres, S., Devillers, E., Hoem, T., Pinarello, V., Hul, V., Vongphayloth, K., Hertz, J.C., Loiseau, I., Dumarest, M., Duong, V., Vayssier-Taussat, M., Grandadam, M., Albina, E., Dussart, P., Moutailler, S., Cappelle, J., Brey, P.T., Eloit, M., 2019. Insights into the Host Range, Genetic Diversity, and Geographical Distribution of Jingmenviruses. mSphere 4, e00645-19. https://doi.org/10.1128/msphere.00645-19

    54. Wang, Z.-D., Wang, B., Wei, F., Han, S.-Z., Zhang, L., Yang, Z.-T., Yan, Y., Lv, X.-L., Li, L., Wang, S.-C., Song, M.-X., Zhang, H.-J., Huang, S.-J., Chen, J., Huang, F.-Q., Li, S., Liu, H.-H., Hong, J., Jin, Y.-L., Wang, W., Zhou, J.-Y., Liu, Q., 2019. A New Segmented Virus Associated with Human Febrile Illness in China. N. Engl. J. Med. 380, 2116-2125. https://doi.org/10.1056/nejmoa1805068

    55. Wingett, S.W., Andrews, S., 2018. FastQ Screen:A tool for multi-genome mapping and quality control. F1000Research 7, 1338. https://doi.org/10.12688/f1000research.15931.2

    56. Wu, X.B., Na, R.H., Wei, S.S., Zhu, J.S., Peng, H.J., 2013. Distribution of tick-borne diseases in China. Parasites and Vectors 6, 119. https://doi.org/10.1186/1756-3305-6-119

    57. Xia, H., Li, P., Yang, J., Pan, L., Zhao, J., Wang, Z., Li, Y., Zhou, H., Dong, Y., Guo, S., Tang, S., Zhang, Z., Fan, Z., Hu, Z., Kou, Z., Li, T., 2011. Epidemiological survey of Crimean-Congo hemorrhagic fever virus in Yunnan, China, 2008. Int. J. Infect. Dis. 15, e459-63. https://doi.org/10.1016/j.ijid.2011.03.013

    58. Xing, X., Guan, X., Zhan, J., Jiang, H., Liu, L., Li, G., Xiong, J., Tan, L., Xu, J., Jiang, Y., Yao, X., Zhan, F., Nie, S., 2016. Natural transmission model for severe fever with thrombocytopenia syndrome bunyavirus in Villages of Hubei Province, China. Med. (United States) 95, e2533. https://doi.org/10.1097/MD.0000000000002533

    59. Xu, B., Liu, L., Huang, X., Ma, H., Zhang, Y., Du, Y., Wang, P., Tang, X., Wang, H., Kang, K., Zhang, S., Zhao, G., Wu, W., Yang, Y., Chen, H., Mu, F., Chen, W., 2011. Metagenomic analysis of fever, thrombocytopenia and leukopenia syndrome (ftls) in henan province, China:Discovery of a new bunyavirus. PLoS Pathog. 7, e1002369. https://doi.org/10.1371/journal.ppat.1002369

    60. Xu, L., Guo, M., Hu, B., Zhou, H., Yang, W., Hui, L., Huang, R., Zhan, J., Shi, W., Wu, Y., 2021. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol. 7, veab089. https://doi.org/10.1093/ve/veab089

    61. Yang, L.E., Zhao, Z., Hou, G., Zhang, C., Liu, J., Xu, L., Li, W., Tan, Z., Tu, C., He, B., 2019. Genomes and seroprevalence of severe fever with thrombocytopenia syndrome virus and Nairobi sheep disease virus in Haemaphysalis longicornis ticks and goats in Hubei, China. Virology 529, 234-245. https://doi.org/10.1016/j.virol.2019.01.026

    62. Zhang, Y., Hu, B., Agwanda, B., Fang, Y., Wang, J., Kuria, S., Yang, J., Masika, M., Tang, S., Lichoti, J., Fan, Z., Shi, Z., Ommeh, S., Wang, H., Deng, F., Shen, S., 2021. Viromes and surveys of RNA viruses in camel-derived ticks revealing transmission patterns of novel tick-borne viral pathogens in Kenya. Emerg. Microbes Infect. 10, 1975-1987. https://doi.org/10.1080/22221751.2021.1986428

    63. Zhang, Yanfang, Shen, S., Fang, Y., Liu, J., Su, Z., Liang, J., Zhang, Z., Wu, Q., Wang, C., Abudurexiti, A., Hu, Z., Zhang, Yujiang, Deng, F., 2018. Isolation, Characterization, and Phylogenetic Analysis of Two New Crimean-Congo Hemorrhagic Fever Virus Strains from the Northern Region of Xinjiang Province, China. Virol. Sin. 33, 74-86. https://doi.org/10.1007/s12250-018-0020-7

    64. Zhao, L., Li, J., Cui, X., Jia, N., Wei, J., Xia, L., Wang, H., Zhou, Y., Wang, Qian, Liu, X., Yin, C., Pan, Y., Wen, H., Wang, Qing, Xue, F., Sun, Y., Jiang, J., Li, S., Cao, W., 2020. Distribution of Haemaphysalis longicornis and associated pathogens:analysis of pooled data from a China field survey and global published data. Lancet Planet. Heal. 4, e320-e329. https://doi.org/10.1016/S2542-5196(20)30145-5

    65. Zhao, Y., Li, M.C., Konaté, M.M., Chen, L., Das, B., Karlovich, C., Williams, P.M., Evrard, Y.A., Doroshow, J.H., McShane, L.M., 2021. TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification Measures for the Analysis of RNA-seq Data from the NCI Patient-Derived Models Repository. J. Transl. Med. 19, 269. https://doi.org/10.1186/s12967-021-02936-w

    66. Zhu, C., He, T., Wu, T., Ai, L., Hu, D., Yang, X., Lv, R., Yang, L., Lv, H., Tan, W., 2020. Distribution and phylogenetic analysis of dabieshan tick virus in ticks collected from Zhoushan, China. J. Vet. Med. Sci. 82, 1226-1230. https://doi.org/10.1292/jvms.20-0081

  • 加载中
  • 10.1016j.virs.2024.02.003-ESM.docx

Article Metrics

Article views(564) PDF downloads(28) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Viromes of Haemaphysalis longicornis reveal different viral abundance and diversity in free and engorged ticks

      Corresponding author: Shu Shen, shenshu@wh.iov.cn
      Corresponding author: Fei Deng, df@wh.iov.cn
    • a. Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b. Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China;
    • c. University of Chinese Academy of Sciences, Beijing, 101408, China;
    • d. Hubei Jiangxia Laboratory, Wuhan, 430200, China;
    • e. Xinjiang Key Laboratory of Vector-borne Infectious Diseases, Urumqi, 830002, China;
    • f. Current address: Department of Medical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 57000, China

    Abstract: Haemaphysalis longicornis ticks, commonly found in East Asia, can transmit various pathogenic viruses, including the severe fever with thrombocytopenia syndrome virus (SFTSV) that has caused febrile diseases among humans in Hubei Province. However, understanding of the viromes of H. longicornis was limited, and the prevalence of viruses among H. longicornis ticks in Hubei was not well clarified. This study investigates the viromes of both engorged (fed) and free (unfed) H. longicornis ticks across three mountainous regions in Hubei Province from 2019 to 2020. RNA-sequencing analysis identified viral sequences that were related to 39 reference viruses belonging to unclassified viruses and seven RNA viral families, namely Chuviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Phenuiviridae, Rhabdoviridae, and Totiviridae. Viral abundance and diversity in these ticks were analysed, and phylogenetic characteristics of the Henan tick virus (HNTV), Dabieshan tick virus (DBSTV), Okutama tick virus (OKTV), and Jingmen tick virus (JMTV) were elucidated based on their full genomic sequences. Prevalence analysis demonstrated that DBSTV was the most common virus found in individual H. longicornis ticks (12.59%), followed by HNTV (0.35%), whereas JMTV and OKTV were not detected. These results improve our understanding of H. longicornis tick viromes in central China and highlight the role of tick feeding status and geography in shaping the viral community. The findings of new viral strains and their potential impact on public health raise the need to strengthen surveillance efforts for comprehensively assessing their spillover potentials.

    Reference (66) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return