Citation: Shangrui Guo, Meng Xun, Tingting Fan, Xinyu Li, Haoyan Yao, Xiaozhen Li, Bo Wu, Hang Yang, Chaofeng Ma, Hongliang Wang. Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo .VIROLOGICA SINICA, 2023, 38(4) : 549-558.  http://dx.doi.org/10.1016/j.virs.2023.05.010

Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo

  • Corresponding author: Hongliang Wang, hongliangwang@xjtu.edu.cn
  • Received Date: 01 February 2023
    Accepted Date: 11 May 2023
    Available online: 26 May 2023
  • Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.

  • 加载中
  • 10.1016j.virs.2023.05.010-ESM.docx
    1. Abuelreish, M.A., Rathore, M.H., 2008. Picornaviruses. In:Barton, L.L., Friedman, N.R. (Eds.), The Neurological Manifestations of Pediatric Infectious Diseases and Immunodeficiency Syndromes,. Humana Totowa, NJ, pp.69-82.

    2. Baggen, J., Thibaut, H.J., Strating, J., Van Kuppeveld, F.J.M., 2018. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 16, 368-381.

    3. Bergelson, J.M., Mohanty, J.G., Crowell, R.L., St John, N.F., Lublin, D.M., Finberg, R.W., 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol, 69, 1903-1906.

    4. Bridgen, A., 2012. Introduction. Reverse Genetics of RNA Viruses:Applications and Perspectives.

    5. Chan, K.P., Goh, K.T., Chong, C.Y., Teo, E.S., Lau, G., Ling, A.E., 2003. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis, 9, 78-85.

    6. Chen, P., Song, Z., Qi, Y., Feng, X., Xu, N., Sun, Y., Wu, X., Yao, X., Mao, Q., Li, X., Dong, W., Wan, X., Huang, N., Shen, X., Liang, Z., Li, W., 2012. Molecular determinants of enterovirus 71 viral entry:cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem, 287, 6406-6420.

    7. Close, D.M., Xu, T., Sayler, G.S., Ripp, S., 2011. In vivo bioluminescent imaging (BLI):noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel), 11, 180-206.

    8. Deng, C., Li, X., Liu, S., Xu, L., Ye, H., Qin, C.F., Zhang, B., 2015. Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virol Sin, 30, 269-276.

    9. England, C.G., Ehlerding, E.B., Cai, W., 2016. NanoLuc:A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug Chem, 27, 1175-1187.

    10. Guo, H., Li, Y., Liu, G., Jiang, Y., Shen, S., Bi, R., Huang, H., Cheng, T., Wang, C., Wei, W., 2019. A second open reading frame in human enterovirus determines viral replication in intestinal epithelial cells. Nat Commun, 10, 4066.

    11. Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M.B., Benink, H.A., Eggers, C.T., Slater, M.R., Meisenheimer, P.L., Klaubert, D.H., Fan, F., Encell, L.P., Wood, K.V., 2012. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol, 7, 1848-1857.

    12. Hannemann, H., 2020. Viral replicons as valuable tools for drug discovery. Drug Discov Today, 25, 1026-1033.

    13. Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvorian, P.M., Pau, C., Van Der Schaar, H., Kaushik-Basu, N., Balla, T., Cameron, C.E., Ehrenfeld, E., Van Kuppeveld, F.J., Altan-Bonnet, N., 2010. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell, 141, 799-811.

    14. Kaplan, G., Racaniello, V.R., 1988. Construction and characterization of poliovirus subgenomic replicons. J Virol, 62, 1687-1696.

    15. Liu, S., Su, Y., Lin, M.Z., Ronald, J.A., 2021. Brightening up Biology:Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol, 16, 2707-2718.

    16. Lulla, V., Dinan, A.M., Hosmillo, M., Chaudhry, Y., Sherry, L., Irigoyen, N., Nayak, K.M., Stonehouse, N.J., Zilbauer, M., Goodfellow, I., Firth, A.E., 2019. An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nat Microbiol, 4, 280-292.

    17. Mcknight, K.L., Lemon, S.M., 1996. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol, 70, 1941-1952.

    18. Mehta, A., Larson, K., Ganapathineedi, B.S., Villegas, E., Dande, S., Ahmed, W., Sebro, N., 2018. An Out-of-Season Case of Coxsackie B Myocarditis with Severe Rhabdomyolysis. Case Rep Infect Dis, 2018, 4258296.

    19. Myers, S.E., Larue, R., Shaw, D.P., Love, B.C.,M, K.N., 2009. Pathogenesis of coxsackievirus-B5 acquired from intra-renal porcine islet cell xenografts in diabetic mice. Xenotransplantation, 16, 91-98.

    20. Nekoua, M.P., Alidjinou, E.K.,Hober, D., 2022. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol, 18, 503-516.

    21. Nikonov, O.S., Chernykh, E.S., Garber, M.B.,Nikonova, E.Y., 2017. Enteroviruses:Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 82, 1615-1631.

    22. Pfister, T.,Wimmer, E., 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem, 274, 6992-7001.

    23. Rutaganira, F.U., Fowler, M.L., Mcphail, J.A., Gelman, M.A., Nguyen, K., Xiong, A., Dornan, G.L., Tavshanjian, B., Glenn, J.S., Shokat, K.M.,Burke, J.E., 2016. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIbeta. J Med Chem, 59, 1830-1839.

    24. Sadikot, R.T.,Blackwell, T.S., 2005. Bioluminescence imaging. Proc Am Thorac Soc, 2, 537-540, 511-532.

    25. Sean, P.,Semler, B.L., 2008. Coxsackievirus B RNA replication:lessons from poliovirus. Curr Top Microbiol Immunol, 323, 89-121.

    26. Shang, B., Deng, C., Ye, H., Xu, W., Yuan, Z., Shi, P.Y.,Zhang, B., 2013. Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Res, 97, 198-205.

    27. Shieh, J.T.,Bergelson, J.M., 2002. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol, 76, 9474-9480.

    28. Simmonds, P., Gorbalenya, A.E., Harvala, H., Hovi, T., Knowles, N.J., Lindberg, A.M., Oberste, M.S., Palmenberg, A.C., Reuter, G., Skern, T., Tapparel, C., Wolthers, K.C., Woo, P.C.Y.,Zell, R., 2020. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch Virol, 165, 793-797.

    29. Song, L., Cui, B., Yang, J., Hao, X., Yan, X., Zhang, J., Liu, D., Song, Z., Wang, Q., Mao, Q.,Liang, Z., 2022. Construction and verification of an infectious cDNA clone of coxsackievirus B5. Virol Sin, 37, 469-471.

    30. Stacer, A.C., Nyati, S., Moudgil, P., Iyengar, R., Luker, K.E., Rehemtulla, A.,Luker, G.D., 2013. NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging, 12, 1-13.

    31. Su, Y., Walker, J.R., Park, Y., Smith, T.P., Liu, L.X., Hall, M.P., Labanieh, L., Hurst, R., Wang, D.C., Encell, L.P., Kim, N., Zhang, F., Kay, M.A., Casey, K.M., Majzner, R.G., Cochran, J.R., Mackall, C.L., Kirkland, T.A.,Lin, M.Z., 2020. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat Methods, 17, 852-860.

    32. Tariq, N.,Kyriakopoulos, C., 2022. Group B Coxsackie Virus. StatPearls.

    33. Tuthill, T.J., Groppelli, E., Hogle, J.M.,Rowlands, D.J., 2010. Picornaviruses. Curr Top Microbiol Immunol, 343, 43-89.

    34. Wang, H., Perry, J.W., Lauring, A.S., Neddermann, P., De Francesco, R.,Tai, A.W., 2014. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology, 146, 1373-1385 e1371-1311.

    35. Wang, H.,Tai, A.W., 2017. Continuous de novo generation of spatially segregated hepatitis C virus replication organelles revealed by pulse-chase imaging. J Hepatol, 66, 55-66.

    36. Wang, M., Yan, J., Zhu, L., Wang, M., Liu, L., Yu, R., Chen, M., Xun, J., Zhang, Y., Yi, Z.,Zhang, S., 2020. The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10. Virol Sin, 35, 426-435.

    37. Xu, L.L., Shan, C., Deng, C.L., Li, X.D., Shang, B.D., Ye, H.Q., Liu, S.Q., Yuan, Z.M., Wang, Q.Y., Shi, P.Y., Zhang, B., 2015. Development of a stable Gaussia luciferase enterovirus 71 reporter virus. J Virol Methods, 219, 62-66.

    38. Yang, H., Zhao, X., Xun, M., Ma, C., Wang, H., 2021. Reverse Genetic Approaches for the Generation of Full Length and Subgenomic Replicon of EV71 Virus. Front Microbiol, 12, 665879.

    39. Yeh, H.W., Karmach, O., Ji, A., Carter, D., Martins-Green, M.M., Ai, H.W., 2017. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods, 14, 971-974.

    40. Yu R., Wang, M., Liu, L., Yan J., Fan, J., Li, X., Kang, M., Xu, J., Zhang, X., Zhang, S., 2023. The development and characterization of a stable Coxsackievirus A16 infectious clone with Nanoluc reporter gene. Frontiers in Microbiology.

    41. Zhang, J.H., Chung, T.D., Oldenburg, K.R., 1999. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 4, 67-73.

  • 加载中

Article Metrics

Article views(1663) PDF downloads(9) Cited by()

Related
Proportional views

    Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo

      Corresponding author: Hongliang Wang, hongliangwang@xjtu.edu.cn
    • a. Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China;
    • b. Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, 710061, China;
    • c. Department of Viral Diseases Laboratory, Xi’an Center for Disease Control and Prevention, Xi’an, 710061, China

    Abstract: Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.

    Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return