. doi: 10.1016/j.virs.2022.09.010
Citation: Xin Cong, Han-bo Li, Xiao-man Sun, Jian-xun Qi, Qing Zhang, Zhao-jun Duan, Yong Xu, Wen-lan Liu. Functional and structural characterization of Norovirus GII.6 in recognizing histo-blood group antigens .VIROLOGICA SINICA, 2023, 38(1) : 56-65.  http://dx.doi.org/10.1016/j.virs.2022.09.010

GII.6诺如病毒识别组织血型抗原的功能和结构基础

  • 诺如病毒(NoVs)是引起全球急性肠胃炎的主要病因。组织血型抗原(HBGAs)是影响诺如病毒流行和宿主易感性的受体或附着因子。GII.6 NoV是人类的流行的基因型别之一,识别HBGAs的ABO分泌型。然而,GII.6 NoV与HBGAs受体相互作用的结构基础仍不清楚。在本研究中,我们利用唾液和聚糖的酶联免疫吸附试验研究了GII.6与HBGAs的结合特征,确定了GII.6识别H双糖的分子基础。结果表明,GII.6 P区蛋白能够识别部分A、O分泌型唾液样本、大部分B分泌型唾液样本以及H双糖抗原,但不能与非分泌型唾液结合。然后,我们测定了GII.6及其H双糖复合物晶体结构,分辨率均为1.7 Å,揭示了GII.6的P区蛋白具有GII HBGAs的传统结合表面和结合模式。对GII.6与H结合位点的单个氨基酸进行突变,可以抑制GII.6与HBGAs的结合,这表明相互作用氨基酸在维持诺如病毒和寡糖相互作用的完整性方面起着至关重要的作用。最后,结构和序列分析表明GII.6-H互作的主要氨基酸在GII基因群中是保守的。综上所述,我们的研究明确了GII.6与HBGAs相互作用的功能和结构特征,,并对诺如病毒的进化、流行病学和抗病毒药物的研发提供了基础。

Functional and structural characterization of Norovirus GII.6 in recognizing histo-blood group antigens

  • Noroviruses (NoVs) are the primary cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) are receptors or attachment factors that affect the prevalence and host susceptibility of NoVs. GII.6 NoV is one of the predominant genotypes in humans, which recognizes the type ABO secretor of HBGAs. However, the structural basis of GII.6 NoV's interaction with HBGAs receptors remains elusive. In this study, we investigated the binding features of the GII.6 strain to HBGAs using saliva- and glycan-ELISA assays and characterized the molecular basis of the GII.6 virus that recognizes H disaccharide. We showed that the GII.6 ​P domain recognized some A and O secretor's saliva samples, most B secretor's saliva samples, and H disaccharide antigen, but did not bind non-secretors' saliva. Further, we determined the crystal structures of GII.6 and its complex with H disaccharides at 1.7 ​Å, revealing that the P domain of GII.6 shares the conventional binding interface and mode of GII HBGAs. Single residue mutations at the GII.6-H binding sites could inhibit the binding of GII.6 to HBGAs, demonstrating that the interaction residues were crucial in maintaining NoV-glycan integrity. Finally, structural and sequence analyses showed that the major residues of the GII.6-H interaction were conserved among NoVs in the GII genogroup. Taken together, our study characterized the functional and structural features of GII.6 that allow it to interact with HBGAs, and shed light on NoV evolution, epidemiology, and anti-viral drug development.

  • 加载中
    1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., Mccoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C.,Zwart, P.H., 2010. PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 66, 213-221.

    2. Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H.,Adams, P.D., 2012. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr, 68, 352-367.

    3. Ahmed, S.M., Hall, A.J., Robinson, A.E., Verhoef, L., Premkumar, P., Parashar, U.D., Koopmans, M.,Lopman, B.A., 2014. Global prevalence of norovirus in cases of gastroenteritis:a systematic review and meta-analysis. The Lancet Infectious Diseases, 14, 725-730.

    4. Ao, Y., Cong, X., Jin, M., Sun, X., Wei, X., Wang, J., Zhang, Q., Song, J., Yu, J., Cui, J., Qi, J., Tan, M.,Duan, Z., 2018. Genetic Analysis of Reemerging GII.P16-GII.2 Noroviruses in 2016-2017 in China. J Infect Dis, 218, 133-143.

    5. Ao, Y., Wang, J., Ling, H., He, Y., Dong, X., Wang, X., Peng, J., Zhang, H., Jin, M.,Duan, Z., 2017. Norovirus GII.P16/GII.2-Associated Gastroenteritis, China, 2016. Emerging Infectious Diseases, 23, 1172-1175.

    6. Cao, S., Lou, Z., Tan, M., Chen, Y., Liu, Y., Zhang, Z., Zhang, X.C., Jiang, X., Li, X.,Rao, Z., 2007. Structural basis for the recognition of blood group trisaccharides by norovirus. J Virol, 81, 5949-5957.

    7. Chan, M.C., Lee, N., Hung, T.N., Kwok, K., Cheung, K., Tin, E.K., Lai, R.W., Nelson, E.A., Leung, T.F.,Chan, P.K., 2015. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat Commun, 6, 10061.

    8. Chen, Y., Tan, M., Xia, M., Hao, N., Zhang, X.C., Huang, P., Jiang, X., Li, X.,Rao, Z., 2011. Crystallography of a Lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histo-blood group antigens. PLoS Pathog, 7, e1002152.

    9. Chhabra, P., De Graaf, M., Parra, G.I., Chan, M.C., Green, K., Martella, V., Wang, Q., White, P.A., Katayama, K., Vennema, H., Koopmans, M.P.G.,Vinje, J., 2019. Updated classification of norovirus genogroups and genotypes. J Gen Virol, 100, 1393-1406.

    10. Cong, X., Sun, X.M., Qi, J.X., Li, H.B., Chai, W.G., Zhang, Q., Wang, H., Kong, X.Y., Song, J., Pang, L.L., Jin, M., Li, D.D., Tan, M.,Duan, Z.J., 2019. GII.13/21 Noroviruses Recognize Glycans with a Terminal beta-Galactose via an Unconventional Glycan Binding Site. J Virol, 93.

    11. De Rougemont, A., Ruvoen-Clouet, N., Simon, B., Estienney, M., Elie-Caille, C., Aho, S., Pothier, P., Le Pendu, J., Boireau, W.,Belliot, G., 2011. Qualitative and quantitative analysis of the binding of GII.4 norovirus variants onto human blood group antigens. J Virol, 85, 4057-4070.

    12. Frenck, R., Bernstein, D.I., Xia, M., Huang, P., Zhong, W., Parker, S., Dickey, M., Mcneal, M.,Jiang, X., 2012. Predicting susceptibility to norovirus GII.4 by use of a challenge model involving humans. J Infect Dis, 206, 1386-1393.

    13. Huang, P., Farkas, T., Zhong, W., Tan, M., Thornton, S., Morrow, A.L.,Jiang, X., 2005. Norovirus and histo-blood group antigens:demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J Virol, 79, 6714-6722.

    14. Huo, Y., Zheng, L., Chen, X., Ge, L.,Wang, Y., 2017. Expression and characterization of the major capsid protein derived from a GII.6 norovirus strain isolated in China. Microb Pathog, 105, 131-137.

    15. Jin, M., Wu, S., Kong, X., Xie, H., Fu, J., He, Y., Feng, W., Liu, N., Li, J., Rainey, J.J., Hall, A.J., Vinje, J.,Duan, Z., 2020. Norovirus Outbreak Surveillance, China, 2016-2018. Emerg Infect Dis, 26, 437-445.

    16. Jin, M., Zhou, Y.K., Xie, H.P., Fu, J.G., He, Y.Q., Zhang, S., Jing, H.B., Kong, X.Y., Sun, X.M., Li, H.Y., Zhang, Q., Li, K., Zhang, Y.J., Zhou, D.Q., Xing, W.J., Liao, Q.H., Liu, N., Yu, H.J., Jiang, X., Tan, M.,Duan, Z.J., 2016. Characterization of the new GII.17 norovirus variant that emerged recently as the predominant strain in China. J Gen Virol, 97, 2620-2632.

    17. Le Pendu, J., 2004. Histo-blood group antigen and human milk oligosaccharides:genetic polymorphism and risk of infectious diseases. Adv Exp Med Biol, 554, 135-143.

    18. Leshem, E., Wikswo, M., Barclay, L., Brandt, E., Storm, W., Salehi, E., Desalvo, T., Davis, T., Saupe, A., Dobbins, G., Booth, H.A., Biggs, C., Garman, K., Woron, A.M., Parashar, U.D., Vinje, J.,Hall, A.J., 2013. Effects and clinical significance of GII.4 Sydney norovirus, United States, 2012-2013. Emerg Infect Dis, 19, 1231-1238.

    19. Lindesmith, L., Moe, C., Marionneau, S., Ruvoen, N., Jiang, X., Lindblad, L., Stewart, P., Lependu, J.,Baric, R., 2003. Human susceptibility and resistance to Norwalk virus infection. Nat Med, 9, 548-553.

    20. Morozov, V., Hanisch, F.G., Wegner, K.M.,Schroten, H., 2018. Pandemic GII.4 Sydney and Epidemic GII.17 Kawasaki308 Noroviruses Display Distinct Specificities for Histo-Blood Group Antigens Leading to Different Transmission Vector Dynamics in Pacific Oysters. Front Microbiol, 9, 2826.

    21. Qian, Y., Song, M., Jiang, X., Xia, M., Meller, J., Tan, M., Chen, Y., Li, X.,Rao, Z., 2019. Structural Adaptations of Norovirus GII.17/13/21 Lineage through Two Distinct Evolutionary Paths. J Virol, 93.

    22. Rydell, G.E., Nilsson, J., Rodriguez-Diaz, J., Ruvoen-Clouet, N., Svensson, L., Le Pendu, J.,Larson, G., 2009. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology, 19, 309-320.

    23. Singh, B.K., Leuthold, M.M.,Hansman, G.S., 2016. Structural Constraints on Human Norovirus Binding to Histo-Blood Group Antigens. mSphere, 1.

    24. Song, C., Takai-Todaka, R., Miki, M., Haga, K., Fujimoto, A., Ishiyama, R., Oikawa, K., Yokoyama, M., Miyazaki, N., Iwasaki, K., Murakami, K., Katayama, K.,Murata, K., 2020. Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS Pathog, 16, e1008619.

    25. Storry, J.R.,Olsson, M.L., 2009. The ABO blood group system revisited:a review and update. Immunohematology, 25, 48-59.

    26. Sun, C., Schattgen, S.A., Pisitkun, P., Jorgensen, J.P., Hilterbrand, A.T., Wang, L.J., West, J.A., Hansen, K., Horan, K.A., Jakobsen, M.R., O'hare, P., Adler, H., Sun, R., Ploegh, H.L., Damania, B., Upton, J.W., Fitzgerald, K.A.,Paludan, S.R., 2015. Evasion of innate cytosolic DNA sensing by a gammaherpesvirus facilitates establishment of latent infection. J Immunol, 194, 1819-1831.

    27. Sun, X., Li, D., Peng, R., Guo, N., Jin, M., Zhou, Y., Xie, G., Pang, L., Zhang, Q., Qi, J.,Duan, Z.J., 2016. Functional and Structural Characterization of P[19] Rotavirus VP8* Interaction with Histo-blood Group Antigens. J Virol, 90, 9758-9765.

    28. Tan, M., Hegde, R.S.,Jiang, X., 2004. The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol, 78, 6233-6242.

    29. Tan, M.,Jiang, X., 2005. Norovirus and its histo-blood group antigen receptors:an answer to a historical puzzle. Trends Microbiol, 13, 285-293.

    30. Tan, M.,Jiang, X., 2011. Norovirus-host interaction:Multi-selections by human histo-blood group antigens. Trends in Microbiology, 19, 382-388.

    31. Tan, M.,Jiang, X., 2012. Norovirus P particle:a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond), 7, 889-897.

    32. Tan, M.,Jiang, X., 2014. Histo-blood group antigens:a common niche for norovirus and rotavirus. Expert Rev Mol Med, 16, e5.

  • 加载中

Article Metrics

Article views(2606) PDF downloads(19) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Functional and structural characterization of Norovirus GII.6 in recognizing histo-blood group antigens

      Corresponding author: Zhao-jun Duan, zhaojund@126.com
      Corresponding author: Yong Xu, xuyong_2000@tom.com
      Corresponding author: Wen-lan Liu, wlliu@szu.edu.cn
    • a. Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China;
    • b. The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China;
    • c. Key Laboratory for Medical Virology and Viral Diseases, National Health Commission of the People's Republic of China, Beijing, 102206, China;
    • d. National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China;
    • e. Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China

    Abstract: Noroviruses (NoVs) are the primary cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) are receptors or attachment factors that affect the prevalence and host susceptibility of NoVs. GII.6 NoV is one of the predominant genotypes in humans, which recognizes the type ABO secretor of HBGAs. However, the structural basis of GII.6 NoV's interaction with HBGAs receptors remains elusive. In this study, we investigated the binding features of the GII.6 strain to HBGAs using saliva- and glycan-ELISA assays and characterized the molecular basis of the GII.6 virus that recognizes H disaccharide. We showed that the GII.6 ​P domain recognized some A and O secretor's saliva samples, most B secretor's saliva samples, and H disaccharide antigen, but did not bind non-secretors' saliva. Further, we determined the crystal structures of GII.6 and its complex with H disaccharides at 1.7 ​Å, revealing that the P domain of GII.6 shares the conventional binding interface and mode of GII HBGAs. Single residue mutations at the GII.6-H binding sites could inhibit the binding of GII.6 to HBGAs, demonstrating that the interaction residues were crucial in maintaining NoV-glycan integrity. Finally, structural and sequence analyses showed that the major residues of the GII.6-H interaction were conserved among NoVs in the GII genogroup. Taken together, our study characterized the functional and structural features of GII.6 that allow it to interact with HBGAs, and shed light on NoV evolution, epidemiology, and anti-viral drug development.

    Reference (32) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return