. doi: 10.1016/j.virs.2023.05.010
Citation: Shangrui Guo, Meng Xun, Tingting Fan, Xinyu Li, Haoyan Yao, Xiaozhen Li, Bo Wu, Hang Yang, Chaofeng Ma, Hongliang Wang. Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo .VIROLOGICA SINICA, 2023, 38(4) : 549-558.  http://dx.doi.org/10.1016/j.virs.2023.05.010

带有荧光素酶报告基因的柯萨奇B5病毒构建及其体内和体外应用

  • 柯萨奇病毒属于小核糖核酸病毒科,是引起婴幼儿手足口病(HFMD)的主要病原体之一,可能导致患者出现严重并发症甚至死亡。这种病毒的发病机制尚未完全阐明,也没有被批准的疫苗或抗病毒药物。本研究构建了柯萨奇病毒B5型病毒的全长感染性cDNA克隆,重组病毒表现出与亲本病毒相似的生长动力学和引起细胞病变的能力。然后在此基础上将荧光素酶报告基因嵌入生成全长或者亚基因组复制子(SGR)报告子病毒。全长报告病毒适合用于高通量抗病毒药物筛选,而SGR则是研究病毒与宿主相互作用的有用工具。更重要的是,我们构建的全长报告病毒也被证明可以感染哺乳小鼠模型,并且可以使用体内成像系统检测到报告基因,从而为体内追踪病毒提供了有力的工具。总之,我们成功构建了柯萨奇病毒B5报告病毒,并为体外和体内研究病毒-宿主相互作用以及高通量筛选(HTS)鉴定新的抗病毒药物提供了独特的工具。

Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo

  • Corresponding author: Hongliang Wang, hongliangwang@xjtu.edu.cn
  • Received Date: 01 February 2023
    Accepted Date: 11 May 2023
  • Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.

  • 加载中
    1. Abuelreish, M.A., Rathore, M.H., 2008. Picornaviruses. In:Barton, L.L., Friedman, N.R. (Eds.), The Neurological Manifestations of Pediatric Infectious Diseases and Immunodeficiency Syndromes,. Humana Totowa, NJ, pp.69-82.

    2. Baggen, J., Thibaut, H.J., Strating, J., Van Kuppeveld, F.J.M., 2018. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol, 16, 368-381.

    3. Bergelson, J.M., Mohanty, J.G., Crowell, R.L., St John, N.F., Lublin, D.M., Finberg, R.W., 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol, 69, 1903-1906.

    4. Bridgen, A., 2012. Introduction. Reverse Genetics of RNA Viruses:Applications and Perspectives.

    5. Chan, K.P., Goh, K.T., Chong, C.Y., Teo, E.S., Lau, G., Ling, A.E., 2003. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis, 9, 78-85.

    6. Chen, P., Song, Z., Qi, Y., Feng, X., Xu, N., Sun, Y., Wu, X., Yao, X., Mao, Q., Li, X., Dong, W., Wan, X., Huang, N., Shen, X., Liang, Z., Li, W., 2012. Molecular determinants of enterovirus 71 viral entry:cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem, 287, 6406-6420.

    7. Close, D.M., Xu, T., Sayler, G.S., Ripp, S., 2011. In vivo bioluminescent imaging (BLI):noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel), 11, 180-206.

    8. Deng, C., Li, X., Liu, S., Xu, L., Ye, H., Qin, C.F., Zhang, B., 2015. Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virol Sin, 30, 269-276.

    9. England, C.G., Ehlerding, E.B., Cai, W., 2016. NanoLuc:A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjug Chem, 27, 1175-1187.

    10. Guo, H., Li, Y., Liu, G., Jiang, Y., Shen, S., Bi, R., Huang, H., Cheng, T., Wang, C., Wei, W., 2019. A second open reading frame in human enterovirus determines viral replication in intestinal epithelial cells. Nat Commun, 10, 4066.

    11. Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M.B., Benink, H.A., Eggers, C.T., Slater, M.R., Meisenheimer, P.L., Klaubert, D.H., Fan, F., Encell, L.P., Wood, K.V., 2012. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol, 7, 1848-1857.

    12. Hannemann, H., 2020. Viral replicons as valuable tools for drug discovery. Drug Discov Today, 25, 1026-1033.

    13. Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvorian, P.M., Pau, C., Van Der Schaar, H., Kaushik-Basu, N., Balla, T., Cameron, C.E., Ehrenfeld, E., Van Kuppeveld, F.J., Altan-Bonnet, N., 2010. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell, 141, 799-811.

    14. Kaplan, G., Racaniello, V.R., 1988. Construction and characterization of poliovirus subgenomic replicons. J Virol, 62, 1687-1696.

    15. Liu, S., Su, Y., Lin, M.Z., Ronald, J.A., 2021. Brightening up Biology:Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol, 16, 2707-2718.

    16. Lulla, V., Dinan, A.M., Hosmillo, M., Chaudhry, Y., Sherry, L., Irigoyen, N., Nayak, K.M., Stonehouse, N.J., Zilbauer, M., Goodfellow, I., Firth, A.E., 2019. An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells. Nat Microbiol, 4, 280-292.

    17. Mcknight, K.L., Lemon, S.M., 1996. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol, 70, 1941-1952.

    18. Mehta, A., Larson, K., Ganapathineedi, B.S., Villegas, E., Dande, S., Ahmed, W., Sebro, N., 2018. An Out-of-Season Case of Coxsackie B Myocarditis with Severe Rhabdomyolysis. Case Rep Infect Dis, 2018, 4258296.

    19. Myers, S.E., Larue, R., Shaw, D.P., Love, B.C.,M, K.N., 2009. Pathogenesis of coxsackievirus-B5 acquired from intra-renal porcine islet cell xenografts in diabetic mice. Xenotransplantation, 16, 91-98.

    20. Nekoua, M.P., Alidjinou, E.K.,Hober, D., 2022. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol, 18, 503-516.

    21. Nikonov, O.S., Chernykh, E.S., Garber, M.B.,Nikonova, E.Y., 2017. Enteroviruses:Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. Biochemistry (Mosc), 82, 1615-1631.

    22. Pfister, T.,Wimmer, E., 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem, 274, 6992-7001.

    23. Rutaganira, F.U., Fowler, M.L., Mcphail, J.A., Gelman, M.A., Nguyen, K., Xiong, A., Dornan, G.L., Tavshanjian, B., Glenn, J.S., Shokat, K.M.,Burke, J.E., 2016. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIbeta. J Med Chem, 59, 1830-1839.

    24. Sadikot, R.T.,Blackwell, T.S., 2005. Bioluminescence imaging. Proc Am Thorac Soc, 2, 537-540, 511-532.

    25. Sean, P.,Semler, B.L., 2008. Coxsackievirus B RNA replication:lessons from poliovirus. Curr Top Microbiol Immunol, 323, 89-121.

    26. Shang, B., Deng, C., Ye, H., Xu, W., Yuan, Z., Shi, P.Y.,Zhang, B., 2013. Development and characterization of a stable eGFP enterovirus 71 for antiviral screening. Antiviral Res, 97, 198-205.

    27. Shieh, J.T.,Bergelson, J.M., 2002. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol, 76, 9474-9480.

    28. Simmonds, P., Gorbalenya, A.E., Harvala, H., Hovi, T., Knowles, N.J., Lindberg, A.M., Oberste, M.S., Palmenberg, A.C., Reuter, G., Skern, T., Tapparel, C., Wolthers, K.C., Woo, P.C.Y.,Zell, R., 2020. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch Virol, 165, 793-797.

    29. Song, L., Cui, B., Yang, J., Hao, X., Yan, X., Zhang, J., Liu, D., Song, Z., Wang, Q., Mao, Q.,Liang, Z., 2022. Construction and verification of an infectious cDNA clone of coxsackievirus B5. Virol Sin, 37, 469-471.

    30. Stacer, A.C., Nyati, S., Moudgil, P., Iyengar, R., Luker, K.E., Rehemtulla, A.,Luker, G.D., 2013. NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging, 12, 1-13.

    31. Su, Y., Walker, J.R., Park, Y., Smith, T.P., Liu, L.X., Hall, M.P., Labanieh, L., Hurst, R., Wang, D.C., Encell, L.P., Kim, N., Zhang, F., Kay, M.A., Casey, K.M., Majzner, R.G., Cochran, J.R., Mackall, C.L., Kirkland, T.A.,Lin, M.Z., 2020. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals. Nat Methods, 17, 852-860.

    32. Tariq, N.,Kyriakopoulos, C., 2022. Group B Coxsackie Virus. StatPearls.

    33. Tuthill, T.J., Groppelli, E., Hogle, J.M.,Rowlands, D.J., 2010. Picornaviruses. Curr Top Microbiol Immunol, 343, 43-89.

    34. Wang, H., Perry, J.W., Lauring, A.S., Neddermann, P., De Francesco, R.,Tai, A.W., 2014. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology, 146, 1373-1385 e1371-1311.

    35. Wang, H.,Tai, A.W., 2017. Continuous de novo generation of spatially segregated hepatitis C virus replication organelles revealed by pulse-chase imaging. J Hepatol, 66, 55-66.

    36. Wang, M., Yan, J., Zhu, L., Wang, M., Liu, L., Yu, R., Chen, M., Xun, J., Zhang, Y., Yi, Z.,Zhang, S., 2020. The Establishment of Infectious Clone and Single Round Infectious Particles for Coxsackievirus A10. Virol Sin, 35, 426-435.

    37. Xu, L.L., Shan, C., Deng, C.L., Li, X.D., Shang, B.D., Ye, H.Q., Liu, S.Q., Yuan, Z.M., Wang, Q.Y., Shi, P.Y., Zhang, B., 2015. Development of a stable Gaussia luciferase enterovirus 71 reporter virus. J Virol Methods, 219, 62-66.

    38. Yang, H., Zhao, X., Xun, M., Ma, C., Wang, H., 2021. Reverse Genetic Approaches for the Generation of Full Length and Subgenomic Replicon of EV71 Virus. Front Microbiol, 12, 665879.

    39. Yeh, H.W., Karmach, O., Ji, A., Carter, D., Martins-Green, M.M., Ai, H.W., 2017. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods, 14, 971-974.

    40. Yu R., Wang, M., Liu, L., Yan J., Fan, J., Li, X., Kang, M., Xu, J., Zhang, X., Zhang, S., 2023. The development and characterization of a stable Coxsackievirus A16 infectious clone with Nanoluc reporter gene. Frontiers in Microbiology.

    41. Zhang, J.H., Chung, T.D., Oldenburg, K.R., 1999. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen, 4, 67-73.

  • 加载中
  • 10.1016j.virs.2023.05.010-ESM.docx

Article Metrics

Article views(1664) PDF downloads(9) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Construction of coxsackievirus B5 viruses with luciferase reporters and their applications in vitro and in vivo

      Corresponding author: Hongliang Wang, hongliangwang@xjtu.edu.cn
    • a. Department of Pathogen Biology and Immunology, Xi’an Jiaotong University Health Science Center, Xi’an, 710061, China;
    • b. Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi’an, 710061, China;
    • c. Department of Viral Diseases Laboratory, Xi’an Center for Disease Control and Prevention, Xi’an, 710061, China

    Abstract: Coxsackievirus belongs to the Picornaviridae family and is one of the major pathogens that cause hand, foot and mouth disease (HFMD) in infants and children with potential serious complications and even deaths. The pathogenesis of this virus is not fully elucidated and no vaccine or antiviral drug has been approved. In this study, a full-length infectious cDNA clone of coxsackievirus B5 virus was assembled and the recombinant virus displayed similar growth kinetics and ability to cause cytopathic effects as the parental virus. Luciferase reporter was then incorporated to generate both full-length and subgenomic replicon (SGR) reporter viruses. The full-length reporter virus is suitable for high-throughput antiviral screening, while the SGR is a useful tool to study viral-host interactions. More importantly, the full-length reporter virus has also been shown to infect the suckling mouse model and the reporter gene could be detected using an in vivo imaging system, thus providing a powerful tool to track viruses in vivo. In summary, we have generated coxsackievirus B5 reporter viruses and provided unique tools for studying virus-host interactions in vitro and in vivo as well as for high-throughput screenings (HTS) to identify novel antivirals.

    Reference (41) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return