Di Kang, Shandian Gao, Zhancheng Tian, Guorui Zhang, Guiquan Guan, Guangyuan Liu, Jianxun Luo, Junzheng Du and Hong Yin. ISG20 inhibits bluetongue virus replication[J]. Virologica Sinica, 2022, 37(4): 521-530. doi: 10.1016/j.virs.2022.04.010
Citation: Di Kang, Shandian Gao, Zhancheng Tian, Guorui Zhang, Guiquan Guan, Guangyuan Liu, Jianxun Luo, Junzheng Du, Hong Yin. ISG20 inhibits bluetongue virus replication .VIROLOGICA SINICA, 2022, 37(4) : 521-530.  http://dx.doi.org/10.1016/j.virs.2022.04.010

ISG20抑制蓝舌病毒的复制

  • ISG20是一种由干扰素诱导的能够抑制病毒复制的核酸外切酶,尽管人们认为ISG20能够降解病毒RNA,但是其对不同病毒的具体作用机理目前尚不明确。本研究聚焦于羊ISG20(oISG20)在蓝舌病毒(BTV)感染细胞中的作用机理,研究发现BTV感染细胞后显著上调oISG20基因的转录水平,且与BTV感染时间和感染剂量呈正相关。在MDOK细胞中过表达oISG20后,BTV在基因水平、病毒蛋白的表达及病毒滴度均明显下降,相反,在敲低oISG20基因的表达后,BTV复制水平明显升高,发现oISG20蛋白能够与BTV VP4蛋白发生互作,核酸外切酶失活的突变型oISG20抑制BTV复制的能力降低,此时突变型oISG20与VP4蛋白的相互作用减弱,提示oISG20与VP4蛋白的相互作用与其抑制BTV的复制相关。本研究明确了oISG20在BTV复制过程的作用,并为深入研究ISG20抑制双链RNA病毒复制的作用机理奠定了基础。

ISG20 inhibits bluetongue virus replication

  • ISG20 is an interferon-inducible exonuclease that inhibits virus replication. Although ISG20 is thought to degrade viral RNA, the antiviral mechanism and specificity of ISG20 remain unclear. In this study, the antiviral role of ovine ISG20 (oISG20) in bluetongue virus (BTV) infection was investigated. It was found that BTV infection upregulated the transcription of ovine ISG20 (oISG20) in a time- and BTV multiplicity of infection (MOI)-dependent manner. Overexpression of oISG20 suppressed the production of BTV genome, proteins, and virus titer, whereas the knockdown of oISG20 increased viral replication. oISG20 was found to co-localize with BTV proteins VP4, VP5, VP6, and NS2, but only directly interacted with VP4. Exonuclease defective oISG20 significantly decreased the inhibitory effect on BTV replication. In addition, the interaction of mutant oISG20 and VP4 was weakened, suggesting that binding to VP4 was associated with the inhibition of BTV replication. The present data characterized the anti-BTV effect of oISG20, and provides a novel clue for further exploring the inhibition mechanism of double-stranded RNA virus by ISG20.

  • 加载中
    1. Beaton, A.R., Rodriguez, J., Reddy, Y.K., Roy, P., 2002. The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. Proc. Natl. Acad. Sci. U. S. A. 99, 13154–13159.

    2. Dai, L., Bai, L., Lin, Z., Qiao, J., Yang, L., Flemington, E.K., Zabaleta, J., Qin, Z., 2016.Transcriptomic analysis of KSHV-infected primary oral fibroblasts: the role of interferon-induced genes in the latency of oncogenic virus. Oncotarget 7, 47052–47060.

    3. Degols, G., Eldin, P., Mechti, N., 2007. ISG20, an actor of the innate immune response.Biochimie 89, 831–835.

    4. Du, J., Xing, S., Tian, Z., Gao, S., Xie, J., Chang, H., Liu, G., Luo, J., Yin, H., 2016.Proteomic analysis of sheep primary testicular cells infected with bluetongue virus.Proteomics 16, 1499–1514.

    5. Espert, L., Degols, G., Gongora, C., Blondel, D., Williams, B.R., Silverman, R.H., Mechti, N., 2003. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol.Chem. 278, 16151–16158.

    6. Espert, L., Degols, G., Lin, Y.L., Vincent, T., Benkirane, M., Mechti, N., 2005. Interferoninduced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J. Gen. Virol. 86, 2221–2229.

    7. Gongora, C., David, G., Pintard, L., Tissot, C., Hua, T.D., Dejean, A., Mechti, N., 1997.Molecular cloning of a new interferon-induced PML nuclear body-associated protein.J. Biol. Chem. 272, 19457–19463.

    8. Hao, Y., Yang, D., 2008. Cloning, eukaryotic expression of human ISG20 and preliminary study on the effect of its anti-HBV. J. Huazhong Univ. Sci. Technol. Med. Sci. 28, 11–13.

    9. Hilke, J., Strobel, H., Woelke, S., Stoeter, M., Voigt, K., Moeller, B., Bastian, M., Ganter, M., 2019. Presence of antibodies against bluetongue virus (BTV) in sheep 5 to 7.5 Years after vaccination with inactivated BTV-8 vaccines. Viruses 11, 533.

    10. Jiang, D., Guo, H., Xu, C., Chang, J., Gu, B., Wang, L., Block, T.M., Guo, J.T., 2008. Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus. J. Virol. 82, 1665–1678.

    11. Kerviel, A., Ge, P., Lai, M., Jih, J., Boyce, M., Zhang, X., Zhou, Z.H., Roy, P., 2019. Atomic structure of the translation regulatory protein NS1 of bluetongue virus. Nat. Microbiol. 4, 837–845.

    12. Labadie, T., Sullivan, E., Roy, P., 2020. Multiple routes of bluetongue virus egress. Microorganisms 8, 965.

    13. Liu, Y., Nie, H., Mao, R., Mitra, B., Cai, D., Yan, R., Guo, J.T., Block, T.M., Mechti, N., Guo, H., 2017. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog. 13, e1006296.

    14. Mertens, P.P., Diprose, J., Maan, S., Singh, K.P., Attoui, H., Samuel, A.R., 2004. Bluetongue virus replication, molecular and structural biology. Vet. Ital. 40, 426–437.

    15. Mohl, B.P., Roy, P., 2014. Bluetongue virus capsid assembly and maturation. Viruses 6, 3250–3270.

    16. Mohl, B.P., Roy, P., 2017. Elucidating virus entry using a tetracysteine-tagged virus. Methods 127, 23–29.

    17. Nguyen, L.H., Espert, L., Mechti, N., Wilson 3rd, D.M., 2001. The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40, 7174–7179.

    18. Patel, A., Roy, P., 2014. The molecular biology of Bluetongue virus replication. Virus Res. 182, 5–20.

    19. Perng, Y.C., Lenschow, D.J., 2018. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 16, 423–439.

    20. Qu, H., Li, J., Yang, L., Sun, L., Liu, W., He, H., 2016. Influenza A Virus-induced expression of ISG20 inhibits viral replication by interacting with nucleoprotein. Virus Gene. 52, 759–767.

    21. Rahman, S.K., Kerviel, A., Mohl, B.P., He, Y., Zhou, Z.H., Roy, P., 2020. A calcium sensor discovered in bluetongue virus nonstructural protein 2 is critical for virus replication. J. Virol. 94, e01099-20.

    22. Roy, P., 2008. Functional mapping of bluetongue virus proteins and their interactions with host proteins during virus replication. Cell Biochem. Biophys. 50, 143–157.

    23. Ruscanu, S., Pascale, F., Bourge, M., Hemati, B., Elhmouzi-Younes, J., Urien, C., Bonneau, M., Takamatsu, H., Hope, J., Mertens, P., Meyer, G., Stewart, M., Roy, P., Meurs, E.F., Dabo, S., Zientara, S., Breard, E., Sailleau, C., Chauveau, E., Vitour, D., Charley, B., Schwartz-Cornil, I., 2012. The double-stranded RNA bluetongue virus induces type I interferon in plasmacytoid dendritic cells via a MYD88-dependent TLR7/8-independent signaling pathway. J. Virol. 86, 5817–5828.

    24. Schoggins, J.W., Rice, C.M., 2011. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 1, 519–525.

    25. Shaw, A.E., Hughes, J., Gu, Q., Behdenna, A., Singer, J.B., Dennis, T., Orton, R.J., Varela, M., Gifford, R.J., Wilson, S.J., Palmarini, M., 2017. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 15, e2004086.

    26. Simmen, K.A., Singh, J., Luukkonen, B.G., Lopper, M., Bittner, A., Miller, N.E., Jackson, M.R., Compton, T., Fruh, K., 2001. Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl. Acad. Sci. U. S. A. 98, 7140–7145.

    27. Stetson, D.B., Medzhitov, R., 2006. Type I interferons in host defense. Immunity 25, 373–381.

    28. Vitour, D., Doceul, V., Ruscanu, S., Chauveau, E., Schwartz-Cornil, I., Zientara, S., 2014. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res. 182, 59–70.

    29. Weiss, C.M., Trobaugh, D.W., Sun, C., Lucas, T.M., Diamond, M.S., Ryman, K.D., Klimstra, W.B., 2018. The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere 3, e00209-18.

    30. Wieland, S., Thimme, R., Purcell, R.H., Chisari, F.V., 2004. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl. Acad. Sci. U. S. A. 101, 6669–6674.

    31. Zheng, Z., Wang, L., Pan, J., 2017. Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: review and outlook. Intractab. Rare Dis. Res. 6, 35–40.

    32. Zhou, Z., Wang, N., Woodson, S.E., Dong, Q., Wang, J., Liang, Y., Rijnbrand, R., Wei, L., Nichols, J.E., Guo, J.T., Holbrook, M.R., Lemon, S.M., Li, K., 2011. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 409, 175–188.

  • 加载中
  • 10.1016j.virs.2022.04.010-ESM.docx

Article Metrics

Article views(2397) PDF downloads(33) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    ISG20 inhibits bluetongue virus replication

      Corresponding author: Junzheng Du, dujunzheng@caas.cn
      Corresponding author: Hong Yin, yinhong@caas.cn
    • a State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China;

    Abstract: ISG20 is an interferon-inducible exonuclease that inhibits virus replication. Although ISG20 is thought to degrade viral RNA, the antiviral mechanism and specificity of ISG20 remain unclear. In this study, the antiviral role of ovine ISG20 (oISG20) in bluetongue virus (BTV) infection was investigated. It was found that BTV infection upregulated the transcription of ovine ISG20 (oISG20) in a time- and BTV multiplicity of infection (MOI)-dependent manner. Overexpression of oISG20 suppressed the production of BTV genome, proteins, and virus titer, whereas the knockdown of oISG20 increased viral replication. oISG20 was found to co-localize with BTV proteins VP4, VP5, VP6, and NS2, but only directly interacted with VP4. Exonuclease defective oISG20 significantly decreased the inhibitory effect on BTV replication. In addition, the interaction of mutant oISG20 and VP4 was weakened, suggesting that binding to VP4 was associated with the inhibition of BTV replication. The present data characterized the anti-BTV effect of oISG20, and provides a novel clue for further exploring the inhibition mechanism of double-stranded RNA virus by ISG20.

    Reference (32) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return