Mingqing Lu, Kunpeng Liu, Yun Peng, Zhe Ding, Yingwen Li, Alexander Tendu, Xue Hu, Ge Gao, Weiwei Guo, Hang Liu, Juhong Rao, Jiaxuan Zhao, Miaoyu Chen, Zhiming Yuan, Gary Wong, Chao Shan, Yanfeng Yao and Jiaming Lan. Recombinant chimpanzee adenovirus vector vaccine expressing the spike protein provides effective and lasting protection against SARS-CoV-2 infection in mice[J]. Virologica Sinica, 2022, 37(4): 581-590. doi: 10.1016/j.virs.2022.05.006
Citation: Mingqing Lu, Kunpeng Liu, Yun Peng, Zhe Ding, Yingwen Li, Alexander Tendu, Xue Hu, Ge Gao, Weiwei Guo, Hang Liu, Juhong Rao, Jiaxuan Zhao, Miaoyu Chen, Zhiming Yuan, Gary Wong, Chao Shan, Yanfeng Yao, Jiaming Lan. Recombinant chimpanzee adenovirus vector vaccine expressing the spike protein provides effective and lasting protection against SARS-CoV-2 infection in mice .VIROLOGICA SINICA, 2022, 37(4) : 581-590.  http://dx.doi.org/10.1016/j.virs.2022.05.006

表达新冠病毒S蛋白的重组黑猩猩腺病毒载体疫苗在小鼠体内诱导有效和持久的免疫保护

  • SARS-CoV-2感染严重威胁人类健康和社会稳定发展。随着疫苗的广泛接种,新冠病毒导致的病死率显著下降。然而,新冠疫苗诱导免疫保护的持久性以及疫苗对新出现的各种变异株的有效性引发人们关注。基于此,我们构建了表达SARS-CoV-2全长刺突蛋白S的重组黑猩猩腺病毒载体疫苗(AdC68-S)。单针或两针接种C57BL/6J小鼠后,均在其体内检测到了快速、高水平的体液和细胞免疫应答反应。更为难得的是,疫苗在小鼠体内诱导的中和抗体在接种后至少6个月內没有显著下降,且对部分变异株有中和作用。AdC68-S疫苗单针或两针接种后,在短期(21天)和长期(6个月)均可抵抗SARS-CoV-2感染小鼠。表现为免疫小鼠肺组织病毒载量和滴度显著下降以及病理学检查显示的AdC68-S免疫小鼠肺组织轻度异常。综上,本研究在小鼠体内证明了AdC68-S疫苗的有效性和持久性,为进一步的临床实验奠定了基础。

Recombinant chimpanzee adenovirus vector vaccine expressing the spike protein provides effective and lasting protection against SARS-CoV-2 infection in mice

  • SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.

  • 加载中
    1. Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., 2020.The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833.

    2. Bos, R., Rutten, L., van der Lubbe, J.E., Bakkers, M.J., Hardenberg, G., Wegmann, F., Zuijdgeest, D., de Wilde, A.H., Koornneef, A., Verwilligen, A., 2020. Ad26 vectorbased COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines 5, 91.

    3. Capone, S., Raggioli, A., Gentile, M., Battella, S., Lahm, A., Sommella, A., Contino, A.M., Urbanowicz, R.A., Scala, R., Barra, F., 2021. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Mol. Ther. 29, 2412–2423.

    4. Elkashif, A., Alhashimi, M., Sayedahmed, E.E., Sambhara, S., Mittal, S.K., 2021.Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin. Transl. Immunology 10, e1345.

    5. Ge, J., Wang, R., Ju, B., Zhang, Q., Sun, J., Chen, P., Zhang, S., Tian, Y., Shan, S., Cheng, L., 2021. Antibody neutralization of SARS-CoV-2 through ACE2 receptor mimicry. Nat. Commun. 12, 250.

    6. Hassan, A.O., Case, J.B., Winkler, E.S., Thackray, L.B., Kafai, N.M., Bailey, A.L., McCune, B.T., Fox, J.M., Chen, R.E., Alsoussi, W.B., 2020. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell 182, 744–753.

    7. Heath, P.T., Galiza, E.P., Baxter, D.N., Boffito, M., Browne, D., Burns, F., Chadwick, D.R., Clark, R., Cosgrove, C., Galloway, J., 2021. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N. Engl. J. Med. 385, 1172–1183.

    8. Huang, Q., Ji, K., Tian, S., Wang, F., Huang, B., Tong, Z., Tan, S., Hao, J., Wang, Q., Tan, W., 2021. A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nat. Commun. 12, 776.

    9. JHU, 2021. COVID-19 Dashboard by the Center for Systems Science and Engineering(CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html.

    10. Keech, C., Albert, G., Cho, I., Robertson, A., Reed, P., Neal, S., Plested, J.S., Zhu, M., Cloney-Clark, S., Zhou, H., 2020. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 383, 2320–2332.

    11. Kerstetter, L.J., Buckley, S., Bliss, C.M., Coughlan, L., 2021. Adenoviral vectors as vaccines for emerging avian influenza viruses. Front. Immunol. 11, 607333.

    12. Khoury, D.S., Cromer, D., Reynaldi, A., Schlub, T.E., Wheatley, A.K., Juno, J.A., Subbarao, K., Kent, S.J., Triccas, J.A., Davenport, M.P., 2021. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211.

    13. Laczkó, D., Hogan, M.J., Toulmin, S.A., Hicks, P., Lederer, K., Gaudette, B.T., Castaño, D., Amanat, F., Muramatsu, H., Oguin III, T.H., Ojha, A., Zhang, L., Mu, Z., Parks, R., Manzoni, T.B., Roper, B., Strohmeier, S., Tombácz, I., Arwood, L., Nachbagauer, R., Karikó, K., Greenhouse, J., Pessaint, P., Porto, M., Putman-Taylor, T., Strasbaugh, A., Campbell, T., Lin, P.J.C., Tam, Y.K., Sempowski, G.D., Farzan, M., Choe, H., Saunders, K.O., Haynes, B.F., Andersen., H., Eisenlohr, L.C., Weissman, D., Krammer, F., Bates, P., Allman, D., Locci, M., Pardi, N., 2020. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53, 724–732.

    14. Li, W., Chen, C., Drelich, A., Martinez, D.R., Gralinski, L.E., Sun, Z., Schäfer, A., Kulkarni, S.S., Liu, X., Leist, S.R., 2020. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proc. Natl. Acad. Sci. U.S.A. 117, 29832–29838.

    15. Li, K., Meyerholz, D.K., Bartlett, J.A., McCray Jr., P.B., 2021a. The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. mBio 12, e0097021.

    16. Li, M., Guo, J., Lu, S., Zhou, R., Shi, H., Shi, X., Cheng, L., Liang, Q., Liu, H., Wang, P., Wang, N., Wang, Y., Fu, L., Xing, M., Wang, R., Ju, B., Liu, L., Lau, S.-Y., Jia, W., Tong, X., Yuan, L., Guo, Y., Qi, H., Zhang, Q., Huang, Z., Chen, H., Zhang, Z., Chen, Z., Peng, X., Zhou, D., Zhang, L., 2021b. Single-dose immunization with a chimpanzee adenovirus-based vaccine induces sustained and protective immunity against SARSCoV-2 infection. Front. Immunol. 12, 697074.

    17. Liu, Q., Xiong, Q., Mei, F., Ma, C., Zhang, Z., Hu, B., Xu, J., Jiang, Y., Zhan, F., Zhou, S., Tao, L., Chen, X., Guo, M., Wang, X., Fang, Y., Shen, S., Liu, Y., Liu, F., Zhou, L., Xu, K., Ke, C., Deng, F., Cai, K., Yan, H., Chen, Y., Lan, K., 2021. Antibody neutralization to SARS-CoV-2 and variants after one year in Wuhan, China. Innovation 3, 100181.

    18. Logunov, D.Y., Dolzhikova, I.V., Shcheblyakov, D.V., Tukhvatulin, A.I., Zubkova, O.V., Dzharullaeva, A.S., Kovyrshina, A.V., Lubenets, N.L., Grousova, D.M., Erokhova, A.S., 2021. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous primeboost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681.

    19. Ma, X., Zou, F., Yu, F., Li, R., Yuan, Y., Zhang, Y., Zhang, X., Deng, J., Chen, T., Song, Z., 2020. Nanoparticle vaccines based on the receptor binding domain (RBD) and heptad repeat (HR) of SARS-CoV-2 elicit robust protective immune responses. Immunity 53, 1315–1330.e9.

    20. McMahan, K., Yu, J., Mercado, N.B., Loos, C., Tostanoski, L.H., Chandrashekar, A., Liu, J., Peter, L., Atyeo, C., Zhu, A., Bondzie, E.A., Dagotto, G., Gebre, M.S., Jacob-Dolan, C., Li, Z., Nampanya, F., Patel, S., Pessaint, L., Ry, A.V., Blade, K., Yalley-Ogunro, J., Cabus, M., Brown, R., Cook, A., Teow, E., Andersen, H., Lewis, M.J., Lauffenburger, D.A., Alter, G., Barouch, D.H., 2021. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634.

    21. Mendonça, S.A., Lorincz, R., Boucher, P., Curiel, D.T., 2021. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines 6, 97.

    22. Ong, S.W.X., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S.Y., Marimuthu, K., 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323, 1610–1612.

    23. Palacios, R., Patiño, E.G., de Oliveira Piorelli, R., Conde, M.T.R.P., Batista, A.P., Zeng, G., Xin, Q., Kallas, E.G., Flores, J., Ockenhouse, C.F., 2020. Double-blind, randomized, placebo-controlled phase iii clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19 (inactivated) vaccine manufactured by Sinovac-PROFISCOV: a structured summary of a study protocol for a randomised controlled trial. Trials 21, 853.

    24. Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Marc, G.P., Moreira, E.D., Zerbini, C., Bailey, R., Swanson, K.A., Roychoudhury, S., Koury, K., Li, P., Kalina, W.V., Cooper D., Jr, R.W.F., Hammitt, L.L., Türeci, Ö., Nell, H., Schaefer, A., Ünal, S., Tresnan, D.B., Mather, S., Dormitzer, P.R., Şahin, U., Jansen, K.U., Gruber, W.C., C4591001 Clinical Trial Group, 2020. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615.

    25. Rathnasinghe, R., Strohmeier, S., Amanat, F., Gillespie, V.L., Krammer, F., GarcíaSastre, A., Coughlan, L., Schotsaert, M., Uccellini, M.B., 2020. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg. Microbes. Infect. 9, 2433–2445.

    26. Scheuch, G., 2020. Breathing is enough: for the spread of influenza virus and SARS-CoV-2 by breathing only. J. Aerosol. Med. Pulm. Drug. Deliv. 33, 230–234.

    27. Sun, J., Zhuang, Z., Zheng, J., Li, K., Wong, R.L.-Y., Liu, D., Huang, J., He, J., Zhu, A., Zhao, J., Li, X., Xi, Y., Chen, R., Alshukairi, A.N., Chen, Z., Zhang, Z., Chen, C., Huang, X., Li, F., Lai, X., Chen, D., Wen, L., Zhuo, J., Zhang, Y., Wang, Y., Huang, S., Dai, J., Shi, Y., Zheng, K., Leidinger, M.R., Chen, J., Li, Y., Zhong, N., Meyerholz, D.K., Jr, P.B.M., Perlman, S., Zhao, J., 2020a. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743e5.

    28. Sun, S.-H., Chen, Q., Gu, H.-J., Yang, G., Wang, Y.-X., Huang, X.-Y., Liu, S.-S., Zhang, N.-N., Li, X.-F., Xiong, R., 2020b. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28, 124–133.e4.

    29. Tostanoski, L.H., Wegmann, F., Martinot, A.J., Loos, C., McMahan, K., Mercado, N.B., Yu, J., Chan, C.N., Bondoc, S., Starke, C.E., Nekorchuk, M., Busman-Sahay, K., PiedraMora, C., Wrijil, L.M., Ducat, S., Custers, J., Atyeo, C., Fischinger, S., Burke, J.S., Feldman, J., Hauser, B.M., Caradonna, T.M., Bondzie, E.A., Dagotto, G., Gebre, M.S., Jacob-Dolan, C., Lin, Z., Mahrokhian, S.H., Nampanya, F., Nityanandam, R., Pessaint, L., Porto, M., Ali, V., Benetiene, D., Tevi, K., Andersen, H., Lewis, M.G., Schmidt, A.G., Lauffenburger, D.A., Alter, G., Estes, J.D., Schuitemaker, H., Zahn, R., Barouch, D.H., 2020. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat. Med. 26, 1694–1700.

    30. van Doremalen, N., Lambe, T., Spencer, A., Belij-Rammerstorfer, S., Purushotham, J.N., Port, J.R., Avanzato, V.A., Bushmaker, T., Flaxman, A., Ulaszewska, M., Feldmann, F., Allen, E.R., Sharpe, H., Schulz, J., Holbrook, M., Okumura, A., Meade-White, K., Pérez-Pérez, L., Edwards, N.J., Wright, D., Bissett, C., Gilbride, C., Williamson, B.N., Rosenke, R., Long, D., Ishwarbhai, A., Kailath, R., Rose, L., Morris, S., Powers, C., Lovaglio, J., Hanley, P.W., Scott, D., Saturday, G., Wit, E.d., Gilbert, S.C., Munster, V.J., 2020. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature 586, 578–582.

    31. Wang, H., Zhang, Y., Huang, B., Deng, W., Quan, Y., Wang, W., Xu, W., Zhao, Y., Li, N., Zhang, J., Liang, H., Bao, L., Xu, Y., Ding, L., Zhou, W., Gao, H., Liu, J., Niu, P., Zhao, L., Zhen, W., Fu, H., Yu, S., Zhang, Z., Xu, G., Li, C., Lou, Z., Xu, M., Qin, C., Wu, G., Gao, G.F., Tan, W., Yang, X., 2020. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182, 713–721.e9.

    32. WHO, 2021a. Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control). https://extranet.who.int/pqweb/vaccines/vaccinescovid-19-vaccine-eul-issued.

    33. WHO, 2021b. COVID-19 vaccine tracker and landscape. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

    34. Xu, K., An, Y., Li, Q., Huang, W., Han, Y., Zheng, T., Fang, F., Liu, H., Liu, C., Gao, P., Xu, S., Liu, X., Zhang, R., Zhao, X., Liu, W.J., Bi, Y., Wang, Y., Zhou, D., Wang, Q., Hou, W., Xia, Q., Gao, G.F., Dai, L., 2021. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg. Microbes. Infect. 10, 1574–1588.

    35. Yang, J., Wang, W., Chen, Z., Lu, S., Yang, F., Bi, Z., Bao, L., Mo, F., Li, X., Huang, Y., Hong, W., Yang, Y., Zhao, Y., Ye, F., Lin, S., Deng, W., Chen, H., Lei, H., Zhang, Z., Luo, M., Gao, H., Zheng, Y., Gong, Y., Jiang, X., Xu, Y., Lv, Q., Li, D., Wang, M., Li, F., Wang, S., Wang, G., Yu, P., Qu, Y., Yang, L., Deng, H., Tong, A., Li, J., Wang, Z., Yang, J., Shen, G., Zhao, Li, Y., Luo, J., Liu, H., Yu, W., Yang, M., Xu, J., Wang, J., Li, H., Wang, H., Kuang, D., Lin, P., Hu, Z., Guo, W., Cheng, W., He, Y., Song, X., Chen, C., Xue, Z., Yao, S., Chen, Lu., Ma, X., Chen, S., Gou, M., Huang, W., Wang, Y., Fan, C., Tian, Z., Shi, M., Wang, F.-S., Dai, L., Wu, M., Li, G., Wang, G., Peng, Y., Qian, Z., Huang, C., Lau, J.Y-N., Yang, Z., Wei, Y., Cen, X., Peng, X., Qin, C., Zhang, K., Lu, G., Wei, X., 2020. A vaccine targeting the RBD of the S protein of SARSCoV-2 induces protective immunity. Nature 586, 572–577.

    36. Zhu, F.-C., Li, Y.-H., Guan, X.-H., Hou, L.-H., Wang, W.-J., Li, J.-X., Wu, S.-P., Wang, B.-S., Wang, Z., Wang, L., Jia, S.-Y., Jiang, H.-D., Wang, L., Jiang, T., Hu, Y., Gou, J.-B., Xu, S.-B., Xu, J.-J., Wang, X.-W., Wang, W., Chen, W., 2020a. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a doseescalation, open-label, non-randomised, first-in-human trial. Lancet 395, 1845–1854.

    37. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F., Tan, W., China Novel Coronavirus Investigating and Research Team, 2020b. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.

  • 加载中
  • 10.1016j.virs.2022.05.006-ESM.docx

Article Metrics

Article views(2196) PDF downloads(20) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Recombinant chimpanzee adenovirus vector vaccine expressing the spike protein provides effective and lasting protection against SARS-CoV-2 infection in mice

      Corresponding author: Gary Wong, garyckwong@ips.ac.cn
      Corresponding author: Chao Shan, shanchao@wh.iov.cn
      Corresponding author: Yanfeng Yao, yaoyf@wh.iov.cn
      Corresponding author: Jiaming Lan, jmlan@ips.ac.cn
    • a CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China;
    • b State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • c University of Chinese Academy of Sciences, Beijing, 100049, China;
    • d Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Abstract: SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.

    Reference (37) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return