Griphin Ochieng Ochola, Bei Li, Vincent Obanda, Sheila Ommeh, Harold Ochieng, Xing-Lou Yang, Samson Omondi Onyuok, Zheng-Li Shi, Bernard Agwanda and Ben Hu. Discovery of novel DNA viruses in small mammals from Kenya[J]. Virologica Sinica, 2022, 37(4): 491-502. doi: 10.1016/j.virs.2022.06.001
Citation: Griphin Ochieng Ochola, Bei Li, Vincent Obanda, Sheila Ommeh, Harold Ochieng, Xing-Lou Yang, Samson Omondi Onyuok, Zheng-Li Shi, Bernard Agwanda, Ben Hu. Discovery of novel DNA viruses in small mammals from Kenya .VIROLOGICA SINICA, 2022, 37(4) : 491-502.  http://dx.doi.org/10.1016/j.virs.2022.06.001

肯尼亚小型哺乳动物中新型DNA病毒的发现

  • 野生动物来源的新发和再发传染病频繁出现,因此针对动物宿主进行主动、先发式的病原监测成为公共卫生领域需要优先开展的工作。啮齿动物和鼩鼱是两类数量丰富的脊椎动物,也是许多重要的人兽共患病毒的自然宿主。许多病原监测项目聚焦于RNA病毒,相比之下,有关啮齿动物和鼩鼱等小型哺乳动物携带DNA病毒的信息要少的多。为了填补这项知识缺口,本研究在肯尼亚的5个郡采集了232只动物的样本,包括226只啮齿动物、5只鼩鼱和一只刺猬,通过PCR进行了7个DNA病毒科的核酸检测,检测到了丰富多样的腺病毒、腺相关病毒、疱疹病毒和多瘤病毒DNA序列。系统发育分析显示本研究所发现的大部分病毒和此前已报道的病毒存在明显差异,在进化树上形成了多个新簇。此外,本研究首次报道了在草鼠属的鼠种中发现的多瘤病毒,并对一株病毒进行了全长基因组测序和鉴定。该毒株命名为条纹草鼠多瘤病毒KY187株。将其和目前已知的与其亲缘关系最近的睡鼠多瘤病毒1、灰松鼠多瘤病毒1两种多瘤病毒相比较,它们大T抗原蛋白和小T抗原蛋白的氨基酸序列相似度均低于60%,因此这一病毒可被推定为β多瘤病毒属的一个新种。本研究有助于我们更好地了解肯尼亚啮齿动物和鼩鼱种群中DNA病毒的遗传多样性,为认识这些DNA病毒在小型哺乳动物储存宿主中的演化提供了新见解,研究结果也说明了在东非地区针对啮齿动物传播病毒持续开展病原发现研究的必要性。

Discovery of novel DNA viruses in small mammals from Kenya

  • Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.

  • 加载中
    1. Abendroth, B., Hoper, D., Ulrich, R.G., Larres, G., Beer, M., 2017. A red squirrel associated adenovirus identified by a combined microarray and deep sequencing approach.Arch. Virol. 162, 3167–3172.

    2. Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Breit, N., Olival, K.J., Daszak, P., 2017. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124.

    3. Boeckh, M., Geballe, A.P., 2011. Cytomegalovirus: pathogen, paradigm, and puzzle.J. Clin. Invest. 121, 1673–1680.

    4. Chen, L., Liu, B., Wu, Z., Jin, Q., Yang, J., 2017. DRodVir: a resource for exploring the virome diversity in rodents. J. Genet. Genomics. 44, 259–264.

    5. Chmielewicz, B., Goltz, M., Ehlers, B., 2001. Detection and multigenic characterization of a novel gammaherpesvirus in goats. Virus Res. 75, 87–94.

    6. Diffo, J., Ndze, V.N., Ntumvi, N.F., Takuo, J.M., Mouiche, M.M.M., Tamoufe, U., Nwobegahay, J., Lebreton, M., Gillis, A., Schneider, B.S., Fair, J.M., Monagin, C., Mciver, D.J., Joly, D.O., Wolfe, N.D., Rubin, E.M., Lange, C.E., 2019. DNA of diverse adenoviruses detected in Cameroonian rodent and shrew species. Arch. Virol. 164, 2359–2366.

    7. Donato, C., Vijaykrishna, D., 2017. The broad host range and genetic diversity of mammalian and avian astroviruses. Viruses 9, 102.

    8. Drexler, J.F., Corman, V.M., Muller, M.A., Lukashev, A.N., Gmyl, A., Coutard, B., Adam, A., Ritz, D., Leijten, L.M., Van Riel, D., Kallies, R., Klose, S.M., GlozaRausch, F., Binger, T., Annan, A., Adu-Sarkodie, Y., Oppong, S., Bourgarel, M., Rupp, D., Hoffmann, B., Schlegel, M., Kummerer, B.M., Kruger, D.H., SchmidtChanasit, J., Setien, A.A., Cottontail, V.M., Hemachudha, T., Wacharapluesadee, S., Osterrieder, K., Bartenschlager, R., Matthee, S., Beer, M., Kuiken, T., Reusken, C., Leroy, E.M., Ulrich, R.G., Drosten, C., 2013. Evidence for novel hepaciviruses in rodents. PLoS Pathog. 9, e1003438.

    9. Ehlers, B., Anoh, A.E., Ben Salem, N., Broll, S., Couacy-Hymann, E., Fischer, D., Gedvilaite, A., Ingenhutt, N.,Liebmann, S., Martin, M.,Mossoun, A., Mugisha, L., Muyembe-Tamfum,J.J., Pauly, M., Perez De Val, B., Preugschas, H., Richter, D., Schubert, G., Szentiks, C.A., Teichmann,T., Walter,C., Ulrich, R.G., Wiersma, L., Leendertz, F.H.,Calvignac-Spencer, S., 2019. Novel polyomaviruses in mammals from multiple orders and reassessment of polyomavirus evolution and taxonomy. Viruses 11, 930.

    10. Ehlers, B., Kuchler, J., Yasmum, N., Dural, G., Voigt, S., Schmidt-Chanasit, J., Jakel, T., Matuschka, F.R., Richter, D., Essbauer, S., Hughes, D.J., Summers, C., Bennett, M., Stewart, J.P., Ulrich, R.G., 2007. Identification of novel rodent herpesviruses, including the first gammaherpesvirus of Mus musculus. J. Virol. 81, 8091–8100.

    11. Flotte, T.R., Berns, K.I., 2005. Adeno-associated virus: a ubiquitous commensal of mammals. Hum. Gene Ther. 16, 401–407.

    12. Gedvilaite, A., Tryland, M., Ulrich, R.G., Schneider, J., Kurmauskaite, V., Moens, U., Preugschas, H., Calvignac-Spencer, S., Ehlers, B., 2017. Novel polyomaviruses in shrews (Soricidae) with close similarity to human polyomavirus 12. J. Gen. Virol. 98, 3060–3067.

    13. Geyer, H., Ettinger, J., Moller, L., Schmolz, E., Nitsche, A., Brune, W., Heaggans, S., Sandford, G.R., Hayward, G.S., Voigt, S., 2015. Rat cytomegalovirus (RCMV) English isolate and a newly identified Berlin isolate share similarities with but are separate as an anciently diverged clade from Mouse CMV and the Maastricht isolate of RCMV.J. Gen. Virol. 96, 1873, 1870.

    14. Golden, J.W., Hammerbeck, C.D., Mucker, E.M., Brocato, R.L., 2015. Animal models for the study of rodent-borne hemorrhagic fever viruses: arenaviruses and hantaviruses.BioMed Res. Int. 2015, 793257.

    15. Gouy De Bellocq, J., Baird, S.J., Albrechtova, J., Sobekova, K., Pialek, J., 2015. Murine cytomegalovirus is not restricted to the house mouse Mus musculus domesticus:prevalence and genetic diversity in the European house mouse hybrid zone. J. Virol. 89, 406–414.

    16. Gryseels, S., Baird, S.J., Borremans, B., Makundi, R., Leirs, H., Gouy De Bellocq, J., 2017.When viruses don't go viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Pathog. 13, e1006073.

    17. Hall, B.G., 2013. Building phylogenetic trees from molecular data with MEGA. Mol. Biol.Evol. 30, 1229–1235.

    18. Han, B.A., Schmidt, J.P., Bowden, S.E., Drake, J.M., 2015. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. U.S.A. 112, 7039–7044.

    19. Harrach, B., Tarjan, Z.L., Benko, M., 2019. Adenoviruses across the animal kingdom: a walk in the zoo. FEBS Lett. 593, 3660–3673.

    20. Hazel, S.M., Bennett, M., Chantrey, J., Bown, K., Cavanagh, R., Jones, T.R., Baxby, D., Begon, M., 2000. A longitudinal study of an endemic disease in its wildlife reservoir:cowpox and wild rodents. Epidemiol. Infect. 124, 551–562.

    21. Hemmi, S., Vidovszky, M.Z., Ruminska, J., Ramelli, S., Decurtins, W., Greber, U.F., Harrach, B., 2011. Genomic and phylogenetic analyses of murine adenovirus 2. Virus Res. 160, 128–135.

    22. Heymann, D.L., Chen, L., Takemi, K., Fidler, D.P., Tappero, J.W., Thomas, M.J., Kenyon, T.A., Frieden, T.R., Yach, D., Nishtar, S., Kalache, A., Olliaro, P.L., Horby, P.,Torreele, E., Gostin, L.O., Ndomondo-Sigonda, M., Carpenter, D., Rushton, S., Lillywhite, L., Devkota, B., Koser, K., Yates, R., Dhillon, R.S., Rannan-Eliya, R.P., 2015. Global health security: the wider lessons from the west African Ebola virus disease epidemic. Lancet 385, 1884–1901.

    23. Irwin, D.M., Kocher, T.D., Wilson, A.C., 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128–144.

    24. Johne, R., Enderlein, D., Nieper, H., Muller, H., 2005. Novel polyomavirus detected in the feces of a chimpanzee by nested broad-spectrum PCR. J. Virol. 79, 3883–3887.

    25. Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., 2008. Global trends in emerging infectious diseases. Nature 451, 990–993.

    26. Kumakamba, C., N'kawa, F., Kingebeni, P.M., Losoma, J.A., Lukusa, I.N., Muyembe, F., Mulembakani, P., Makuwa, M., Lebreton, M., Gillis, A., Rimoin, A.W., Hoff, N.A., Schneider, B.S., Monagin, C., Joly, D.O., Wolfe, N.D., Rubin, E.M., Tamfum, J.J.M., Lange, C.E., 2020. Analysis of adenovirus DNA detected in rodent species from the Democratic Republic of the Congo indicates potentially novel adenovirus types. New.Microbes. New. Infect. 34, 100640.

    27. Li, Y., Ge, X., Hon, C.C., Zhang, H., Zhou, P., Zhang, Y., Wu, Y., Wang, L.F., Shi, Z., 2010a.Prevalence and genetic diversity of adeno-associated viruses in bats from China.J. Gen. Virol. 91, 2601–2609.

    28. Li, Y., Ge, X., Zhang, H., Zhou, P., Zhu, Y., Zhang, Y., Yuan, J., Wang, L.F., Shi, Z., 2010b.Host range, prevalence, and genetic diversity of adenoviruses in bats. J. Virol. 84, 3889–3897.

    29. Lu, L., Van Dung, N., Ivens, A., Bogaardt, C., O'toole, A., Bryant, J.E., Carrique-Mas, J., Van Cuong, N., Anh, P.H., Rabaa, M.A., Tue, N.T., Thwaites, G.E., Baker, S., Simmonds, P., Woolhouse, M.E., Consortium, V., 2018. Genetic diversity and crossspecies transmission of kobuviruses in Vietnam. Virus. Evol. 4, vey002.

    30. Luis, A.D., Hayman, D.T., O'shea, T.J., Cryan, P.M., Gilbert, A.T., Pulliam, J.R., Mills, J.N., Timonin, M.E., Willis, C.K., Cunningham, A.A., Fooks, A.R., Rupprecht, C.E., Wood, J.L., Webb, C.T., 2013. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. Biol. Sci. 280, 20122753.

    31. Milholland, M.T., Castro-Arellano, I., Suzan, G., Garcia-Pena, G.E., Lee Jr., T.E., Rohde, R.E., Alonso Aguirre, A., Mills, J.N., 2018. Global diversity and distribution of hantaviruses and their hosts. EcoHealth 15, 163–208.

    32. Mingozzi, F., High, K.A., 2011. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341–355.

    33. Ictv Report, C. Moens, U., Calvignac-Spencer, S., Lauber, C., Ramqvist, T., Feltkamp, M.C.W., Daugherty, M.D., Verschoor, E.J., Ehlers, B., 2017a. ICTV virus taxonomy profile: Polyomaviridae J. Gen. Virol. 98, 1159–1160.

    34. Moens, U., Krumbholz, A., Ehlers, B., Zell, R., Johne, R., Calvignac-Spencer, S., Lauber, C., 2017b. Biology, evolution, and medical importance of polyomaviruses: an update.Infect. Genet. Evol. 54, 18–38.

    35. Morse, S.S., Mazet, J.A., Woolhouse, M., Parrish, C.R., Carroll, D., Karesh, W.B., Zambrana-Torrelio, C., Lipkin, W.I., Daszak, P., 2012. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965.

    36. Musila, S., Monadjem, A., Webala, P.W., Patterson, B.D., Hutterer, R., De Jong, Y.A., Butynski, T.M., Mwangi, G., Chen, Z.Z., Jiang, X.L., 2019. An annotated checklist of mammals of Kenya. Zool. Res. 40, 3–52.

    37. Nainys, J., Timinskas, A., Schneider, J., Ulrich, R.G., Gedvilaite, A., 2015. Identification of two novel members of the tentative genus wukipolyomavirus in wild rodents. PLoS One 10, e0140916.

    38. Niller, H.H., Angstwurm, K., Rubbenstroth, D., Schlottau, K., Ebinger, A., Giese, S., Wunderlich, S., Banas, B., Forth, L.F., Hoffmann, D., Hoper, D., Schwemmle, M., Tappe, D., Schmidt-Chanasit, J., Nobach, D., Herden, C., Brochhausen, C., VelezChar, N., Mamilos, A., Utpatel, K., Evert, M., Zoubaa, S., Riemenschneider, M.J., Ruf, V., Herms, J., Rieder, G., Errath, M., Matiasek, K., Schlegel, J., LiescheStarnecker, F., Neumann, B., Fuchs, K., Linker, R.A., Salzberger, B., Freilinger, T., Gartner, L., Wenzel, J.J., Reischl, U., Jilg, W., Gessner, A., Jantsch, J., Beer, M., Schmidt, B., 2020. Zoonotic spillover infections with Borna disease virus 1 leading to fatal human encephalitis, 1999-2019: an epidemiological investigation. Lancet Infect.Dis. 20, 467–477.

    39. Nitsche, A., Ellerbrok, H., Pauli, G., 2004. Detection of orthopoxvirus DNA by real-time PCR and identification of variola virus DNA by melting analysis. J. Clin. Microbiol. 42, 1207–1213.

    40. Ntumvi, N.F., Mbala Kingebeni, P., Tamoufe, U., Kumakamba, C., Ndze, V., Ngay Lukusa, I., Lebreton, M., Atibu Losoma, J., Le Doux Diffo, J., N'kawa, F., Takuo, J.M., Mulembakani, P., Nwobegahay, J., Makuwa, M., Muyembe Tamfum, J.J., Gillis, A., Harris, S., Rimoin, A.W., Hoff, N.A., Fair, J.M., Monagin, C., Ayukekbong, J., Rubin, E.M., Wolfe, N.D., Lange, C.E., 2018. High herpesvirus diversity in wild rodent and shrew species in central Africa. Intervirology 61, 155–165.

    41. Onyuok, S.O., Hu, B., Li, B., Fan, Y., Kering, K., Ochola, G.O., Zheng, X.S., Obanda, V., Ommeh, S., Yang, X.L., Agwanda, B., Shi, Z.L., 2019. Molecular detection and genetic characterization of novel RNA viruses in wild and synanthropic rodents and shrews in Kenya. Front. Microbiol. 10, 2696.

    42. Orba, Y., Kobayashi, S., Nakamura, I., Ishii, A., Hang'ombe, B.M., Mweene, A.S., Thomas, Y., Kimura, T., Sawa, H., 2011. Detection and characterization of a novel polyomavirus in wild rodents. J. Gen. Virol. 92, 789–795.

    43. Sasaki, M., Muleya, W., Ishii, A., Orba, Y., Hang'ombe, B.M., Mweene, A.S., Moonga, L., Thomas, Y., Kimura, T., Sawa, H., 2014. Molecular epidemiology of paramyxoviruses in Zambian wild rodents and shrews. J. Gen. Virol. 95, 325–330.

    44. Schulze, V., Lurz, P.W.W., Ferrari, N., Romeo, C., Steele, M.A., Marino, S., Mazzamuto, M.V., Calvignac-Spencer, S., Schlottau, K., Beer, M., Ulrich, R.G., Ehlers, B., 2020. Search for polyoma-, herpes-, and bornaviruses in squirrels of the family Sciuridae. Virol. J. 17, 42.

    45. Shan, T., Lan, D., Li, L., Wang, C., Cui, L., Zhang, W., Hua, X., Zhu, C., Zhao, W., Delwart, E., 2011. Genomic characterization and high prevalence of bocaviruses in swine. PLoS One 6, e17292.

    46. Sikes, R.S., Gannon, W.L., Mammalogists, A.S., 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253.

    47. Silva, N.I.O., De Oliveira, J.S., Kroon, E.G., Trindade, G.S., Drumond, B.P., 2020. Here, there, and everywhere: the wide host range and geographic distribution of zoonotic orthopoxviruses. Viruses 13, 43.

    48. Tischer, B.K., Osterrieder, N., 2010. Herpesviruses–a zoonotic threat? Vet. Microbiol. 140, 266–270.

    49. Wang, B., Yang, X.L., Li, W., Zhu, Y., Ge, X.Y., Zhang, L.B., Zhang, Y.Z., Bock, C.T., Shi, Z.L., 2017. Detection and genome characterization of four novel bat hepadnaviruses and a hepevirus in China. Virol. J. 14, 40.

    50. Wang, L.F., Crameri, G., 2014. Emerging zoonotic viral diseases. Rev. Sci. Tech. 33, 569–581.

    51. Woolhouse, M.E., Gowtage-Sequeria, S., 2005. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842–1847.

    52. Xiong, Y.Q., Zhang, M.Y., Zhou, J.H., Li, Y.Z., You, F.F., Wen, Y.Q., He, W.Q., Chen, Q., 2018. A molecular epidemiological investigation of carriage of the adeno-associated virus in murine rodents and house shrews in China. Intervirology 61, 143–148.

    53. Young, H.S., Mccauley, D.J., Dirzo, R., Nunn, C.L., Campana, M.G., Agwanda, B., OtarolaCastillo, E.R., Castillo, E.R., Pringle, R.M., Veblen, K.E., Salkeld, D.J., Stewardson, K., Fleischer, R., Lambin, E.F., Palmer, T.M., Helgen, K.M., 2017. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160116.

    54. Zheng, X.Y., Qiu, M., Ke, X.M., Guan, W.J., Li, J.M., Huo, S.T., Chen, S.W., Zhong, X.S., Zhou, W., Xiong, Y.Q., Ge, J., Chen, Q., 2016. Detection of novel adenoviruses in fecal specimens from rodents and shrews in southern China. Virus Gene. 52, 417–421.

    55. Zhou, Z.J., Qiu, Y., Pu, Y., Huang, X., Ge, X.Y., 2020. BioAider: an efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sustain.Cities Soc. 63, 102466.

  • 加载中
  • 10.1016j.virs.2022.06.001-ESM.docx

Article Metrics

Article views(3723) PDF downloads(33) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Discovery of novel DNA viruses in small mammals from Kenya

      Corresponding author: Bernard Agwanda, benrisky@gmail.com
      Corresponding author: Ben Hu, huben@wh.iov.cn
    • a CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China;
    • b Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China;
    • c Mammalogy Section, National Museums of Kenya, Nairobi, 40658-00100, Kenya;
    • d University of Chinese Academy of Sciences, Beijing, 100049, China;
    • e Veterinary Services Department, Kenya Wildlife Service, Nairobi, 40241-00100, Kenya;
    • f Institute of Biotechnology Research, Jomo Kenyatta University of Science and Technology, Nairobi, 62000-00200, Kenya

    Abstract: Emergence and re-emergence of infectious diseases of wildlife origin have led pre-emptive pathogen surveillances in animals to be a public health priority. Rodents and shrews are among the most numerically abundant vertebrate taxa and are known as natural hosts of important zoonotic viruses. Many surveillance programs focused more on RNA viruses. In comparison, much less is known about DNA viruses harbored by these small mammals. To fill this knowledge gap, tissue specimens of 232 animals including 226 rodents, five shrews and one hedgehog were collected from 5 counties in Kenya and tested for the presence of DNA viruses belonging to 7 viral families by PCR. Diverse DNA sequences of adenoviruses, adeno-associated viruses, herpesviruses and polyomaviruses were detected. Phylogenetic analyses revealed that most of these viruses showed distinction from previously described viruses and formed new clusters. Furthermore, this is the first report of the discovery and full-length genome characterization of a polyomavirus in Lemniscomys species. This novel polyomavirus, named LsPyV KY187, has less than 60% amino acid sequence identity to the most related Glis glis polyomavirus 1 and Sciurus carolinensis polyomavirus 1 in both large and small T-antigen proteins and thus can be putatively allocated to a novel species within Betapolyomavirus. Our findings help us better understand the genetic diversity of DNA viruses in rodent and shrew populations in Kenya and provide new insights into the evolution of those DNA viruses in their small mammal reservoirs. It demonstrates the necessity of ongoing pathogen discovery studies targeting rodent-borne viruses in East Africa.

    Reference (55) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return