Jielin Tang, Muqing Fu, Chonghui Xu, Bao Xue, Anqi Zhou, Sijie Chen, He Zhao, Yuan Zhou, Jizheng Chen, Qi Yang and Xinwen Chen. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection[J]. Virologica Sinica, 2023, 38(5): 767-777. doi: 10.1016/j.virs.2023.06.003
Citation: Jielin Tang, Muqing Fu, Chonghui Xu, Bao Xue, Anqi Zhou, Sijie Chen, He Zhao, Yuan Zhou, Jizheng Chen, Qi Yang, Xinwen Chen. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection .VIROLOGICA SINICA, 2023, 38(5) : 767-777.  http://dx.doi.org/10.1016/j.virs.2023.06.003

一种新型蜱传脑炎病毒样颗粒疫苗的研发

  • 蜱传脑炎病毒(Tick-borne encephalitis virus, TBEV)是一种以蜱虫为传播媒介的人畜共患病原体,感染可引起脑膜炎、脑炎和脑膜脑炎等神经系统疾病症状,病死率高达10-20%。由于已批准的疫苗免疫原性相对较低、接种率不高等劣势,导致TBEV感染的患者恢复不完全。因此,开展新型、高效、安全的TBEV疫苗研发具有重要意义。本项目设计了一款在Expi293F细胞中共表达TBE结构蛋白(Core/prM/E)和非结构蛋白(NS2B/NS3Pro),通过体内自组装形成病毒样颗粒(Virus-like particles, VLPs)。通过病毒大小、形态和比对免疫VLPs小鼠血清IgG产生能力、病毒中和能力、CD4+ T细胞应答和攻毒保护实验等综合评估VLPs的功效。结果显示免疫VLPs的C57/BL6小鼠能产生高水平IgG应答,其小鼠血清也能高效中和TBEV远东亚型和欧洲亚型的感染,呈现了抗体交叉保护反应。免疫VLPs的I型干扰素受体缺失小鼠(IFNAR-/-)可免受TBEV感染。免疫VLPs小鼠病毒感染3天后,大脑和肠道组织并未检测出病毒载量,病理切片也未出现明显的病变。同时,接种VLPs小鼠脑组织中炎症因子受到明显抑制。此外,VLPs免疫诱导小鼠体内产生多细胞因子介导的抗病毒CD4+ T细胞反应,包括TNF-α+、IL-2+和IFN-γ+ T细胞。以上结果表明此种TBEV VLPs可以作为一款潜在且安全有效、用于抗蜱传脑炎病毒感染的候选疫苗。

Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection

  • Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.

  • 加载中
    1. Aberle, J.H., Aberle, S.W., Allison, S.L., Stiasny, K., Ecker, M., Mandl, C.W., Berger, R.,Heinz, F.X., 1999. A DNA immunization model study with constructs expressing the tick-borne encephalitis virus envelope protein E in different physical forms. J Immunol, 163, 6756-6761.

    2. Aberle, J.H., Schwaiger, J., Aberle, S.W., Stiasny, K., Scheinost, O., Kundi, M., Chmelik, V.,Heinz, F.X., 2015. Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection. PLoS One, 10, e0140545.

    3. Bogovic, P.,Strle, F., 2015. Tick-borne encephalitis:A review of epidemiology, clinical characteristics, and management. World J Clin Cases, 3, 430-441.

    4. Boigard, H., Alimova, A., Martin, G.R., Katz, A., Gottlieb, P.,Galarza, J.M., 2017. Zika virus-like particle (VLP) based vaccine. PLoS Negl Trop Dis, 11, e0005608.

    5. Chen, Q.,Lai, H., 2013. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother, 9, 26-49.

    6. Chernokhaeva, L.L., Rogova, Y.V., Vorovitch, M.F., Romanova, L., Kozlovskaya, L.I., Maikova, G.B., Kholodilov, I.S.,Karganova, G.G., 2016. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin. Vaccine, 34, 2354-2361.

    7. Dai, L., Song, J., Lu, X., Deng, Y.Q., Musyoki, A.M., Cheng, H., Zhang, Y., Yuan, Y., Song, H., Haywood, J., Xiao, H., Yan, J., Shi, Y., Qin, C.F., Qi, J.,Gao, G.F., 2016. Structures of the Zika Virus Envelope Protein and Its Complex with a Flavivirus Broadly Protective Antibody. Cell Host Microbe, 19, 696-704.

    8. Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W., Davey, D.F., Flynn, B.J., Hoff, S.T., Andersen, P., Reed, S.G., Morris, S.L., Roederer, M.,Seder, R.A., 2007. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med, 13, 843-850.

    9. Demicheli, V., Debalini, M.G.,Rivetti, A., 2009. Vaccines for preventing tick-borne encephalitis. Cochrane Database Syst Rev, 2009, Cd000977.

    10. Domnich, A., Panatto, D., Arbuzova, E.K., Signori, A., Avio, U., Gasparini, R.,Amicizia, D., 2014. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype:systematic review and meta-analysis. Hum Vaccin Immunother, 10, 2819-2833.

    11. Füzik, T., Formanová, P., Růžek, D., Yoshii, K., Niedrig, M.,Plevka, P., 2018. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun, 9, 436.

    12. Fritz, R., Orlinger, K.K., Hofmeister, Y., Janecki, K., Traweger, A., Perez-Burgos, L., Barrett, P.N.,Kreil, T.R., 2012. Quantitative comparison of the cross-protection induced by tick-borne encephalitis virus vaccines based on European and Far Eastern virus subtypes. Vaccine, 30, 1165-1169.

    13. Garg, H., Mehmetoglu-Gurbuz, T., Ruddy, G.M.,Joshi, A., 2019. Capsid containing virus like particle vaccine against Zika virus made from a stable cell line. Vaccine, 37, 7123-7131.

    14. Garg, H., Sedano, M., Plata, G., Punke, E.B.,Joshi, A., 2017. Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. J Virol, 91, e00834.

    15. Groom, J.R.,Luster, A.D., 2011. CXCR3 in T cell function. Exp Cell Res, 317, 620-631.

    16. Grygorczuk, S., Czupryna, P., Pancewicz, S., Świerzbińska, R., Kondrusik, M., Dunaj, J., Zajkowska, J.,Moniuszko-Malinowska, A., 2018. Intrathecal expression of IL-5 and humoral response in patients with tick-borne encephalitis. Ticks Tick Borne Dis, 9, 896-911.

    17. Grygorczuk, S., Zajkowska, J., Swierzbińska, R., Pancewicz, S., Kondrusik, M.,Hermanowska-Szpakowicz, T., 2006.[Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis]. Neurol Neurochir Pol, 40, 106-111.

    18. Heinz, F.X., Allison, S.L., Stiasny, K., Schalich, J., Holzmann, H., Mandl, C.W.,Kunz, C., 1995. Recombinant and virion-derived soluble and particulate immunogens for vaccination against tick-borne encephalitis. Vaccine, 13, 1636-1642.

    19. Holzer, G.W., Remp, G., Antoine, G., Pfleiderer, M., Enzersberger, O.M., Emsenhuber, W., Hämmerle, T., Gruber, F., Urban, C., Falkner, F.G.,Dorner, F., 1999. Highly efficient induction of protective immunity by a vaccinia virus vector defective in late gene expression. J Virol, 73, 4536-4542.

    20. Jeong, H.,Seong, B.L., 2017. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol, 55, 220-230.

    21. Kannanganat, S., Ibegbu, C., Chennareddi, L., Robinson, H.L.,Amara, R.R., 2007. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J Virol, 81, 8468-8476.

    22. Kubinski, M., Beicht, J., Gerlach, T., Volz, A., Sutter, G.,Rimmelzwaan, G.F., 2020. Tick-Borne Encephalitis Virus:A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel), 8, 451.

    23. Kunze, U., 2011. Tick-borne encephalitis:the impact of epidemiology, changing lifestyle, and environmental factors. Conference report of the 12th Annual Meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE). Vaccine, 29, 1355-1356.

    24. Lepej, S.Z., Misić-Majerus, L., Jeren, T., Rode, O.D., Remenar, A., Sporec, V.,Vince, A., 2007. Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand, 115, 109-114.

    25. Li, A., Yu, J., Lu, M., Ma, Y., Attia, Z., Shan, C., Xue, M., Liang, X., Craig, K., Makadiya, N., He, J.J., Jennings, R., Shi, P.Y., Peeples, M.E., Liu, S.L., Boyaka, P.N.,Li, J., 2018. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat Commun, 9, 3067.

    26. Lin, H.H., Yip, B.S., Huang, L.M.,Wu, S.C., 2018. Zika virus structural biology and progress in vaccine development. Biotechnol Adv, 36, 47-53.

    27. Lindquist, L.,Vapalahti, O., 2008. Tick-borne encephalitis. Lancet, 371, 1861-1871.

    28. Liu, Y., Zhou, J., Yu, Z., Fang, D., Fu, C., Zhu, X., He, Z., Yan, H.,Jiang, L., 2014. Tetravalent recombinant dengue virus-like particles as potential vaccine candidates:immunological properties. BMC Microbiol, 14, 233.

    29. Liu, Y.L., Si, B.Y., Hu, Y., Zhang, Y., Yang, Y.H.,Zhu, Q.Y., 2005.[Expression of tick-borne encephalitis virus prM-E protein in insect cells and studies on its antigenicity]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 19, 335-339.

    30. Lobigs, M., 1993. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A, 90, 6218-6222.

    31. Loew-Baselli, A., Konior, R., Pavlova, B.G., Fritsch, S., Poellabauer, E., Maritsch, F., Harmacek, P., Krammer, M., Barrett, P.N.,Ehrlich, H.J., 2006. Safety and immunogenicity of the modified adult tick-borne encephalitis vaccine FSME-IMMUN:results of two large phase 3 clinical studies. Vaccine, 24, 5256-5263.

    32. Makedonas, G.,Betts, M.R., 2006. Polyfunctional analysis of human t cell responses:importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol, 28, 209-219.

    33. Malogolovkin, A., Davies, A., Abouelhadid, S., Kerviel, A., Roy, P.,Falconar, A.K., 2023. Enhanced Zika virus-like particle development using Baculovirus spp. constructs. J Med Virol, 95, e28252.

    34. Mandl, C.W., 2005. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res, 111, 161-174.

    35. Mcauley, A.J., Sawatsky, B., Ksiazek, T., Torres, M., Korva, M., Lotrič-Furlan, S., Avšič-Županc, T., Von Messling, V., Holbrook, M.R., Freiberg, A.N., Beasley, D.W.C.,Bente, D.A., 2017. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. NPJ Vaccines, 2, 5.

    36. Metz, S.W., Thomas, A., White, L., Stoops, M., Corten, M., Hannemann, H.,De Silva, A.M., 2018. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol J, 15, 60.

    37. Morozova, O.V., Bakhvalova, V.N., Potapova, O.F., Grishechkin, A.E., Isaeva, E.I., Aldarov, K.V., Klinov, D.V.,Vorovich, M.F., 2014. Evaluation of immune response and protective effect of four vaccines against the tick-borne encephalitis virus. Vaccine, 32, 3101-3106.

    38. Palus, M., Vojtíšková, J., Salát, J., Kopecký, J., Grubhoffer, L., Lipoldová, M., Demant, P.,Růžek, D., 2013. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation, 10, 77.

    39. Pantaleo, G.,Harari, A., 2006. Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol, 6, 417-423.

    40. Phanthanawiboon, S., Limkittikul, K., Sakai, Y., Takakura, N., Saijo, M.,Kurosu, T., 2016. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors. PLoS One, 11, e0148564.

    41. Pokorna Formanova, P., Palus, M., Salat, J., Hönig, V., Stefanik, M., Svoboda, P.,Ruzek, D., 2019. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation, 16, 205.

    42. Pulkkinen, L.I.A., Butcher, S.J.,Anastasina, M., 2018. Tick-Borne Encephalitis Virus:A Structural View. Viruses, 10, 350-370.

    43. Ruzek, D., Avšič Županc, T., Borde, J., Chrdle, A., Eyer, L., Karganova, G., Kholodilov, I., Knap, N., Kozlovskaya, L., Matveev, A., Miller, A.D., Osolodkin, D.I., verby, A.K., Tikunova, N., Tkachev, S.,Zajkowska, J., 2019. Tick-borne encephalitis in Europe and Russia:Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res, 164, 23-51.

    44. Růžek, D., Salát, J., Singh, S.K.,Kopecký, J., 2011. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One, 6, e20472.

    45. Stocks, C.E.,Lobigs, M., 1998. Signal peptidase cleavage at the flavivirus C-prM junction:dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J Virol, 72, 2141-2149.

    46. Studahl, M., Lindquist, L., Eriksson, B.M., Günther, G., Bengner, M., Franzen-Röhl, E., Fohlman, J., Bergström, T.,Aurelius, E., 2013. Acute viral infections of the central nervous system in immunocompetent adults:diagnosis and management. Drugs, 73, 131-158.

    47. Sui, Y., Potula, R., Dhillon, N., Pinson, D., Li, S., Nath, A., Anderson, C., Turchan, J., Kolson, D., Narayan, O.,Buch, S., 2004. Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol, 164, 1557-1566.

    48. Sui, Y., Stehno-Bittel, L., Li, S., Loganathan, R., Dhillon, N.K., Pinson, D., Nath, A., Kolson, D., Narayan, O.,Buch, S., 2006. CXCL10-induced cell death in neurons:role of calcium dysregulation. Eur J Neurosci, 23, 957-964.

    49. Suss, J., 2008. Tick-borne encephalitis in Europe and beyond——the epidemiological situation as of 2007. Euro Surveill, 13, 18916-18924.

    50. Taba, P., Schmutzhard, E., Forsberg, P., Lutsar, I., Ljøstad, U., Mygland,, Levchenko, I., Strle, F.,Steiner, I., 2017. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur J Neurol, 24, 1214-1261.

    51. Tang, J., Xu, C., Fu, M., Liu, C., Zhang, X., Zhang, W., Pei, R., Wang, Y., Zhou, Y., Chen, J., Miao, Z., Pan, G., Yang, Q.,Chen, X., 2023. Sterile 20-like kinase 3 promotes tick-borne encephalitis virus assembly by interacting with NS2A and prM and enhancing the NS2A-NS4A association. J Med Virol, 10.1002/jmv.28610.

    52. Taylor, T.J., Diaz, F., Colgrove, R.C., Bernard, K.A., Deluca, N.A., Whelan, S.P.J.,Knipe, D.M., 2016. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology, 496, 186-193.

    53. Urakami, A., Ngwe Tun, M.M., Moi, M.L., Sakurai, A., Ishikawa, M., Kuno, S., Ueno, R., Morita, K.,Akahata, W., 2017. An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design. J Virol, 91, e01181.

    54. Van Marle, G., Henry, S., Todoruk, T., Sullivan, A., Silva, C., Rourke, S.B., Holden, J., Mcarthur, J.C., Gill, M.J.,Power, C., 2004. Human immunodeficiency virus type 1 Nef protein mediates neural cell death:a neurotoxic role for IP-10. Virology, 329, 302-318.

    55. Vang, L., Morello, C.S., Mendy, J., Thompson, D., Manayani, D., Guenther, B., Julander, J., Sanford, D., Jain, A., Patel, A., Shabram, P., Smith, J.,Alexander, J., 2021. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl Trop Dis, 15, e0009195.

    56. Weaver, J.M., Yang, H., Roumanes, D., Lee, F.E., Wu, H., Treanor, J.J.,Mosmann, T.R., 2013. Increase in IFNγ(-)IL-2(+) cells in recent human CD4 T cell responses to 2009 pandemic H1N1 influenza. PLoS One, 8, e57275.

    57. Werme, K., Wigerius, M.,Johansson, M., 2008. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol, 10, 696-712.

    58. Wilkinson, T.M., Li, C.K., Chui, C.S., Huang, A.K., Perkins, M., Liebner, J.C., Lambkin-Williams, R., Gilbert, A., Oxford, J., Nicholas, B., Staples, K.J., Dong, T., Douek, D.C., Mcmichael, A.J.,Xu, X.N., 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med, 18, 274-280.

    59. Yamaji, H.,Konishi, E., 2016. Production of Japanese Encephalitis Virus-Like Particles Using Insect Cell Expression Systems. Methods Mol Biol, 1404, 365-375.

    60. Yang, L., Xiao, A., Wang, H., Zhang, X., Zhang, Y., Li, Y., Wei, Y., Liu, W.,Chen, C., 2022. A VLP-Based Vaccine Candidate Protects Mice against Japanese Encephalitis Virus Infection. Vaccines (Basel), 10.

    61. Yang, Q., Pei, R., Wang, Y., Zhou, Y., Yang, M., Chen, X.,Chen, J., 2021. ADAM15 Participates in Tick-Borne Encephalitis Virus Replication. J Virol, 95, e01926-01946.

    62. Yang, Q., You, J., Zhou, Y., Wang, Y., Pei, R., Chen, X., Yang, M.,Chen, J., 2020. Tick-borne encephalitis virus NS4A ubiquitination antagonizes type I interferon-stimulated STAT1/2 signalling pathway. Emerg Microbes Infect, 9, 714-726.

    63. Zajkowska, J., Moniuszko-Malinowska, A., Pancewicz, S.A., Muszyńska-Mazur, A., Kondrusik, M., Grygorczuk, S., Swierzbińska-Pijanowska, R., Dunaj, J.,Czupryna, P., 2011. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE). Adv Med Sci, 56, 311-317.

    64. Zhao, Z., Deng, Y., Niu, P., Song, J., Wang, W., Du, Y., Huang, B., Wang, W., Zhang, L., Zhao, P.,Tan, W., 2021. Co-Immunization With CHIKV VLP and DNA Vaccines Induces a Promising Humoral Response in Mice. Front Immunol, 12, 655743.

    65. Zheng, Z., Yang, J., Jiang, X., Liu, Y., Zhang, X., Li, M., Zhang, M., Fu, M., Hu, K., Wang, H., Luo, M.H., Gong, P.,Hu, Q., 2018. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity. J Immunol, 201, 53-68.

  • 加载中
  • 10.1016j.virs.2023.06.003-EMS.docx

Article Metrics

Article views(1624) PDF downloads(20) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection

      Corresponding author: Qi Yang, yang_qi@gzlab.ac.cn
      Corresponding author: Xinwen Chen, chen_xinwen@gzlab.ac.cn
    • a. Guangzhou National Laboratory, Guangzhou, 510005, China;
    • b. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China;
    • c. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China;
    • d. GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China;
    • e. State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China

    Abstract: Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.

    Reference (65) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return