For best viewing of the website please use Mozilla Firefox or Google Chrome.

. doi: 10.1016/j.virs.2022.04.008
Citation: Caina Ma, Shasha Li, Fan Yang, Weijun Cao, Huisheng Liu, Tao Feng, Keshan Zhang, Zixiang Zhu, Xiangtao Liu, Yonghao Hu, Haixue Zheng. FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect [J].VIROLOGICA SINICA, 2022, 37(3) : 445-454.  http://dx.doi.org/10.1016/j.virs.2022.04.008

FoxJ1抑制非洲猪瘟病毒复制且病毒蛋白S273R下调FoxJ1的表达以削弱其抗病毒作用

  • 非洲猪瘟(ASF)是由非洲猪瘟病毒(ASFV)感染家猪和野猪引起的的高致病性烈性传染病,给养猪业造成了巨大经济损失,严重威胁着全球粮食安全和养殖业发展。迄今为止,还未有针对非洲猪瘟的安全有效的商品化疫苗。因此,揭示ASFV与宿主的相互作用机制对于开发有效的ASFV疫苗和抗病毒药物至关重要。本研究通过RNA-seq技术、RT-qPCR和Western blotting分析发现,ASFV感染猪原代肺泡巨噬细胞后,宿主因子FoxJ1的转录和蛋白水平均显著下调。进一步研究发现,过表达FoxJ1可上调poly (dA:dT)诱导的I型干扰素和干扰素刺激基因(ISGs)转录,促进天然免疫应答,抑制ASFV的复制。此外,FoxJ1通过自噬途径降解ASFV MGF505-2R和E165R蛋白;而ASFV S273R能够抑制FoxJ1的表达。综上所述,我们发现FoxJ1具有抑制ASFV复制的功能,且ASFV S273R蛋白通过抑制FoxJ1表达,拮抗FoxJ1介导的抗病毒作用。本研究拓宽了对FoxJ1的抗病毒功能的认知,为ASFV抗病毒药物或疫苗的设计研发提供理论依据。

FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect

  • African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF. Unveiling the underlying mechanisms of ASFV-host interplay is critical for developing effective vaccines and drugs against ASFV. In the present study, RNA-sequencing, RT-qPCR and Western blotting analysis revealed that the transcriptional and protein levels of the host factor FoxJ1 were significantly down-regulated in primary porcine alveolar macrophages (PAMs) infected by ASFV. RT-qPCR analysis showed that overexpression of FoxJ1 upregulated the transcription of type I interferon and interferon stimulating genes (ISGs) induced by poly(dA:dT). FoxJ1 revealed a function to positively regulate innate immune response, therefore, suppressing the replication of ASFV. In addition, Western blotting analysis indicated that FoxJ1 degraded ASFV MGF505-2R and E165R proteins through autophagy pathway. Meanwhile, RT-qPCR and Western blotting analysis showed that ASFV S273R inhibited the expression of FoxJ1. Altogether, we determined that FoxJ1 plays an antiviral role against ASFV replication, and ASFV protein impairs FoxJ1-mediated antiviral effect by degradation of FoxJ1. Our findings provide new insights into the antiviral function of FoxJ1, which might help design antiviral drugs or vaccines against ASFV infection.

  • 加载中
    1. Ablasser, A., Bauernfeind, F., Hartmann, G., Latz, E., Fitzgerald, K.A., Hornung, V., 2009.RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065-U1040.

    2. Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L., Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J. Virol. 78, 1858-1864.

    3. Alonso, C., Galindo, I., Cuesta-Geijo, M.A., Cabezas, M., Hernaez, B., Munoz-Moreno, R., 2013. African swine fever virus-cell interactions:from virus entry to cell survival.Virus Res. 173, 42-57.

    4. Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., Ståhl, K., 2019.Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Manag. 5, 6.

    5. Chilvers, M.A., Mckean, M., Rutman, A., Myint, B.S., Silverman, M., O"Callaghan, C., 2001. The effects of coronavirus on human nasal ciliated respiratory epithelium. Eur.Respir. J. 18, 965-970.

    6. Choksi, S.P., Lauter, G., Swoboda, P., Roy, S., 2014. Switching on cilia:transcriptional networks regulating ciliogenesis. Development 141, 1427.

    7. Coffer, P.J., Burgering, B.M.T., 2004. Forkhead-box transcription factors and their role in the immune system. Nat. Rev. Immunol. 4, 889-899.

    8. Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J., Pfeiffer, D., 2013. Epidemiology of African swine fever virus. Virus Res. 173, 191-197.

    9. de Wit, E., van Doremalen, N., Falzarano, D., Munster, V., 2016. SARS and MERS:recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523-534.

    10. Fu, Y., Tong, J., Meng, F., Hoeltig, D., Liu, G., Yin, X., Herrler, G., 2018. Ciliostasis of airway epithelial cells facilitates influenza A virus infection. Vet. Res. 49, 65.

    11. Gassmann, M., Grenacher, B., Rohde, B., Vogel, J., 2009. Quantifying western blots:pitfalls of densitometry. Electrophoresis 30, 1845-1855.

    12. Golding, J., Goatley, L., Goodbourn, S., Dixon, L., Taylor, G., Netherton, C., 2016.Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493, 154-161.

    13. Gordon, S., Clarke, S., Greaves, D., Doyle, A., 1995. Molecular immunobiology of macrophages-recent progress. Curr. Opin. Immunol. 7, 24-33.

    14. Griggs, T.F., Bochkov, Y.A., Basnet, S., Pasic, T.R., Brockman-Schneider, R.A., Palmenberg, A.C., Gern, J.E., 2017. Rhinovirus C targets ciliated airway epithelial cells. Respir. Res. 18, 84.

    15. Hopfner, K.P., Hornung, V., 2020. Molecular mechanisms and cellular functions of cGAS-STING signalling. Nat. Rev. Mol. Cell Biol. 1-21.

    16. Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., Zhang, J., 2017. Roles of African swine fever virus structural proteins in viral infection. J. Vet. Res. 61, 135-143.

    17. Jonsson, H., Peng, S.L., 2005. Forkhead transcription factors in immunology. Cell. Mol.Life Sci. 62, 397-409.

    18. Kim, N., Kim, M.J., Sung, P.S., Bae, Y.C., Shin, E.C., Yoo, J.Y., 2016. Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat. Commun. 7, 10631.

    19. Kuek, L.E., Lee, R.J., 2020. First contact:the role of respiratory cilia in host-pathogen interactions in the airways. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L603-l619.

    20. Li, C.Y., Chai, Y., Song, H., Weng, C.J., Qi, J.X., Sun, Y.P., Gao, G.F., 2019. Crystal structure of African swine fever virus dUTPase reveals a potential drug target. mBio 10.

    21. Li, D., Zhang, J., Yang, W., Li, P., Ru, Y., Kang, W., Li, L., Ran, Y., Zheng, H., 2021a.African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1-and JAK2-mediated signaling. J. Biol. Chem. 297, 101190.

    22. Li, G., Liu, X., Yang, M., Zhang, G., Wang, Z., Guo, K., Gao, Y., Jiao, P., Sun, J., Chen, C., Wang, H., Deng, W., Xiao, H., Li, S., Wu, H., Wang, Y., Cao, L., Jia, Z., Shang, L., Yang, C., Guo, Y., Rao, Z., 2020. Crystal structure of African swine fever virus pS273R protease and implications for inhibitor design. J. Virol. 94, e02125-19.

    23. Li, J., Song, J., Kang, L., Huang, L., Zhou, S., Hu, L., Zheng, J., Li, C., Zhang, X., He, X., Zhao, D., Bu, Z., Weng, C., 2021b. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production. PLoS Pathog. 17, e1009733.

    24. Li, W., Zhu, Z., Cao, W., Yang, F., Zhang, X., Li, D., Zhang, K., Li, P., Mao, R., Liu, X., 2016.Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Mol. Immunol. 75, 112-121.

    25. Lin, L., Brody, S.L., Peng, S.L., 2005. Restraint of B cell activation by Foxj1-mediated antagonism of NF-kappa B and IL-6. J. Immunol. 175, 951-958.

    26. Lin, L., Spoor, M.S., Gerth, A.J., Brody, S.L., Peng, S.L., 2004. Modulation of Th1 activation and inflammation by the NF-kappaB repressor Foxj1. Science 303, 1017-1020.

    27. Liu, H., Li, K., Chen, W., Yang, F., Cao, W., Zhang, K., Li, P., Tang, L., Zhu, Z., Zheng, H., 2022. Senecavirus A 2B protein suppresses type I interferon production by inducing the degradation of MAVS. Mol. Immunol. 142, 11-21.

    28. Liu, H., Zhu, Z., Feng, T., Ma, Z., Xue, Q., Wu, P., Li, P., Li, S., Yang, F., Cao, W., Xue, Z., Chen, H., Liu, X., Zheng, H., 2021. African swine fever virus E120R protein inhibits interferon-β production by interacting with IRF3 to block its activation. J. Virol. 95, e0082421.

    29. Look, D.C., Walter, M.J., Williamson, M.R., Pang, L., You, Y., Sreshta, J.N., Johnson, J.E., Zander, D.S., Brody, S.L., 2001. Effects of paramyxoviral infection on airway epithelial cell Foxj1 expression, ciliogenesis, and mucociliary function. Am. J. Pathol. 159, 2055-2069.

    30. Malmquist, W.A., Hay, D., 1960. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. Am. J. Vet. Res. 21, 104-108.

    31. Mata, M., Sarrion, I., Armengot, M., Carda, C., Martinez, I., Melero, J.A., Cortijo, J., 2012. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells:effectiveness of N-acetylcysteine. PLoS One 7, e48037.

    32. Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K.-J., Coppes, R.P., Engedal, N., Mari, M., Reggiori, F., 2018. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 14, 1435-1455.

    33. Mossessova, E., Lima, C.D., 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865-876.

    34. Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G., 2005. A structural perspective of the flavivirus life cycle. Nat. Rev. Microbiol. 3, 13-22.

    35. Mulumba-Mfumu, L., Saegerman, C., Dixon, L., Madimba, K., Kazadi, E., Mukalakata, N., Oura, C., Chenais, E., Masembe, C., Ståhl, K., Thiry, E., Penrith, M., 2019. African swine fever:update on eastern, central and southern Africa. Transbound. Emerg. Dis. 66, 1462-1480.

    36. Petiot, A., Ogier-Denis, E., Blommaart, E.F.C., Meijer, A.J., Codogno, P., 2000. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992-998.

    37. Pruneda, J., Durkin, C., Geurink, P., Ovaa, H., Santhanam, B., Holden, D., Komander, D., 2016. The molecular basis for ubiquitin and ubiquitin-like specificities in bacterial effector proteases. Mol. Cell 63, 261-276.

    38. Rai, A., Pruitt, S., Ramirez-Medina, E., Vuono, E.A., Silva, E., Velazquez-Salinas, L., Carrillo, C., Borca, M.V., Gladue, D.P., 2020. Identification of a continuously stable and commercially available cell line for the identification of infectious African swine fever virus in clinical samples. Viruses 12, 820.

    39. Rai, K.R., Shrestha, P., Yang, B., Chen, Y., Chen, J.L., 2021. Acute Infection of Viral Pathogens and Their Innate Immune Escape.

    40. Reed, L.J., 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27.

    41. Sanchez-Cordon, P.J., Montoya, M., Reis, A.L., Dixon, L.K., 2018. African swine fever:a re-emerging viral disease threatening the global pig industry. Vet. J. 233, 41-48.

    42. Sanchez, E.G., Riera, E., Nogal, M., Gallardo, C., Fernandez, P., Bello-Morales, R., Antonio Lopez-Guerrero, J., Chitko-McKown, C.G., Richt, J.A., Revilla, Y., 2017. Phenotyping and susceptibility of established porcine cells lines to African Swine Fever Virus infection and viral production. Sci. Rep. 7, 10369.

    43. Schmittgen, T.D., Livak, K.J., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101-1108.

    44. Schneider, W.M., Chevillotte, M., Rice, C.M., 2014. Interferon-stimulated genes:a complex web of host defenses. Annu. Rev. Immunol. 32, 513-545.

    45. Seglen, P.O., Gordon, P.B., 1982. 3-Methyladenine:specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 79, 1889-1892.

    46. Smith, C.M., Kulkarni, H., Radhakrishnan, P., Rutman, A., Bankart, M.J., Williams, G., Hirst, R.A., Easton, A.J., Andrew, P.W., O'Callaghan, C., 2014. Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur. Respir. J. 43, 485-496.

    47. Srivatsan, S., Peng, S.L., 2005. Cutting edge:Foxj1 protects against autoimmunity and inhibits thymocyte egress. J. Immunol. (Baltimore, Md:1950) 175, 7805.

    48. Stubbs, J.L., Oishi, I., Belmonte, J.I., Kintner, C., 2008. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat. Genet. 40, 1454-1460.

    49. Sumpter, R., Levine, B., 2011. Selective autophagy and viruses. Autophagy 7, 260-265.

    50. Sun, N., Jiang, L., Ye, M., Wang, Y., Wang, G., Wan, X., Zhao, Y., Wen, X., Liang, L., Ma, S., Liu, L., Bu, Z., Chen, H., Li, C., 2020. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 11, 894-914.

    51. Tao, D., Sun, D., Liu, Y., Wei, S., Yang, Z., An, T., Shan, F., Chen, Z., Liu, J., 2020. One year of African swine fever outbreak in China. Acta Trop. 211, 105602.

    52. van Furth, R., Cohn, Z.A., Hirsch, J.G., Humphrey, J.H., Spector, W.G., Langevoort, H.L., 1972. Mononuclear phagocytic system:new classification of macrophages, monocytes and of their cell line. Bull. World Health Organ. 47, 651-658.

    53. Wang, S., Yu, M., Liu, A., Bao, Y., Qi, X., Gao, L., Chen, Y., Liu, P., Wang, Y., Xing, L., Meng, L., Zhang, Y., Fan, L., Li, X., Pan, Q., Zhang, Y., Cui, H., Li, K., Liu, C., He, X., Gao, Y., Wang, X., 2021. TRIM25 inhibits infectious bursal disease virus replication by targeting VP3 for ubiquitination and degradation. PLoS Pathog. 17, e1009900.

    54. Wu, C., Peluso, J., Shanley, J., Puddington, L., Thrall, R., 2008. Murine cytomegalovirus influences Foxj1 expression, ciliogenesis, and mucus plugging in mice with allergic airway disease. Am. J. Pathol. 172, 714-724.

    55. Wu, J.X., Sun, L.J., Chen, X., Du, F.H., Shi, H.P., Chen, C., Chen, Z.J.J., 2013. Cyclic GMPAMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826-830.

    56. Xia, P.Y., Wang, S., Gao, P., Gao, G.X., Fan, Z.S., 2016. DNA sensor cGAS-mediated immune recognition. Protein Cell 7, 777-791.

    57. Yang, B., Zhang, D., Shi, X., Shen, C., Hao, Y., Zhang, T., Yang, J., Yuan, X., Chen, X., Zhao, D., Cui, H., Li, D., Zhu, Z., Tian, H., Yang, F., Zheng, H., Zhang, K., Liu, X., 2021a. Construction, identification and analysis of the interaction network of African swine fever virus MGF360-9L with host proteins. Viruses 13.

    58. Yang, J.P., Li, S.S., Feng, T., Zhang, X.L., Yang, F., Cao, W.J., Chen, H.J., Liu, H.S., Zhang, K.S., Zhu, Z.X., Zheng, H.X., 2021b. African swine fever virus F317L protein inhibits NF-kappa B activation to evade host immune response and promote viral replication. mSphere 6.

    59. Zhang, K., Yang, B., Shen, C., Zhang, T., Hao, Y., Zhang, D., Liu, H., Shi, X., Li, G., Yang, J., Li, D., Zhu, Z., Tian, H., Yang, F., Ru, Y., Cao, W.J., Guo, J., He, J., Zheng, H., Liu, X., 2022. MGF360-9L is a major virulence factor Associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. mBio 13, e0233021.

    60. Zhang, S., Wang, R., Zhu, X.J., Jin, J.X., Lu, W.L., Zhao, X.Y., Wan, B., Liao, Y.F., Zhao, Q., Netherton, C.L., Zhuang, G.Q., Sun, A.J., Zhang, G.P., 2021. Identification and characterization of a novel epitope of ASFV-encoded dUTPase by monoclonal antibodies. Viruses-Basel 13.

    61. Zhang, Z.Q., Yuan, B., Bao, M.S., Lu, N., Kim, T., Liu, Y.J., 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959-U962.

    62. Zhao, G., Li, T., Liu, X., Zhang, T., Zhang, Z., Kang, L., Song, J., Zhou, S., Chen, X., Wang, X., Li, J., Huang, L., Li, C., Bu, Z., Zheng, J., Weng, C., 2022. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 298, 101480.

    63. Zsak, L., Lu, Z., Burrage, T.G., Neilan, J.G., Kutish, G.F., Moore, D.M., Rock, D.L., 2001. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 75, 3066-3076.

  • 加载中
  • 10.1016j.virs.2022.04.008-ESM.docx

Article Metrics

Article views(1195) PDF downloads(12) Cited by(0)

Related
Proportional views
    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect

      Corresponding author: Yonghao Hu, yhh0817@126.com
      Corresponding author: Haixue Zheng, haixuezheng@163.com
    • a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China;
    • b State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China

    Abstract: African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF. Unveiling the underlying mechanisms of ASFV-host interplay is critical for developing effective vaccines and drugs against ASFV. In the present study, RNA-sequencing, RT-qPCR and Western blotting analysis revealed that the transcriptional and protein levels of the host factor FoxJ1 were significantly down-regulated in primary porcine alveolar macrophages (PAMs) infected by ASFV. RT-qPCR analysis showed that overexpression of FoxJ1 upregulated the transcription of type I interferon and interferon stimulating genes (ISGs) induced by poly(dA:dT). FoxJ1 revealed a function to positively regulate innate immune response, therefore, suppressing the replication of ASFV. In addition, Western blotting analysis indicated that FoxJ1 degraded ASFV MGF505-2R and E165R proteins through autophagy pathway. Meanwhile, RT-qPCR and Western blotting analysis showed that ASFV S273R inhibited the expression of FoxJ1. Altogether, we determined that FoxJ1 plays an antiviral role against ASFV replication, and ASFV protein impairs FoxJ1-mediated antiviral effect by degradation of FoxJ1. Our findings provide new insights into the antiviral function of FoxJ1, which might help design antiviral drugs or vaccines against ASFV infection.

    Reference (63) Relative (20)

    目录

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return